|
60 | 60 | training_group.add_argument('--batch-size', type=int, help="batch size, default: 32", default=32)
|
61 | 61 | training_group.add_argument('--lr', type=float, help='learning rate, default: 3e-4', default=3e-4)
|
62 | 62 | training_group.add_argument('--epochs', type=int, help='number of training epochs, default: 100', default=100)
|
63 |
| -training_group.add_argument('--sequence-length', type=int, help='sequence length, needs to be divisible by 4, default: 256', default=256) |
| 63 | +training_group.add_argument('--sequence-length', type=int, help='sequence length, needs to be divisible by chunks_per_offset, default: 400', default=400) |
| 64 | +training_group.add_argument('--chunks-per-offset', type=int, help='chunks per offset', default=4) |
64 | 65 | training_group.add_argument('--lr-decay-factor', type=float, help='learning rate decay factor, default: 2.5e-5', default=2.5e-5)
|
65 | 66 | training_group.add_argument('--split-mode', type=str, choices=['split', 'random_split'], help='splitting mode for decoder input, default: split', default='split')
|
66 | 67 | training_group.add_argument('--enable-first-frame-loss', action='store_true', default=False, help='enables dedicated distortion loss on first 4 decoder frames')
|
|
120 | 121 |
|
121 | 122 | # model
|
122 | 123 | checkpoint['model_args'] = (num_features, latent_dim, quant_levels, cond_size, cond_size2)
|
123 |
| -checkpoint['model_kwargs'] = {'state_dim': state_dim, 'split_mode' : split_mode, 'pvq_num_pulses': args.pvq_num_pulses, 'state_dropout_rate': args.state_dropout_rate, 'softquant': softquant} |
| 124 | +checkpoint['model_kwargs'] = {'state_dim': state_dim, 'split_mode' : split_mode, 'pvq_num_pulses': args.pvq_num_pulses, 'state_dropout_rate': args.state_dropout_rate, 'softquant': softquant, 'chunks_per_offset': args.chunks_per_offset} |
124 | 125 | model = RDOVAE(*checkpoint['model_args'], **checkpoint['model_kwargs'])
|
125 | 126 |
|
126 | 127 | if type(args.initial_checkpoint) != type(None):
|
|
0 commit comments