-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDijkstrasShortestPath.cpp
147 lines (122 loc) · 3.36 KB
/
DijkstrasShortestPath.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
// Dijkstra's shortest path algorithm
#include "stdafx.h"
#include <iostream>
#include <fstream>
#include <vector>
#include <string>
#include <sstream>
using namespace std;
// Edge structure to be used in graph data structure (array of edges)
struct edge
{
// 2nd node to make the edge
int node2;
// Length value for edge
int length;
// Connected edge for dijkstra calculation
edge *nextEdge;
};
// Dijkstra's shortest path algorithm
// Dist will be 1000000 if no path found
void Dijkstra(edge **graph, vector<int>& dist, int startNode, int numNodes)
{
//Create a flag for whether or not a node has been visited and initialize to false
vector<bool> visited(numNodes + 1, false);
visited[startNode] = true;
dist[startNode] = 0;
// Iterate over all nodes to calculate shortest path between them and startNode (1)
for (int i = 2; i <= numNodes; i++)
{
int node2, length = 1000000;
// Calculate shortest path by adding all edges in a BFS manner
for (int i = 1; i <= numNodes; i++)
{
if (visited[i])
{
edge *tmp = graph[i];
while (tmp != NULL)
{
// Calculate path to see if shorter
if (!visited[tmp->node2] && (dist[i] + tmp->length)<length)
{
node2 = tmp->node2;
length = (dist[i] + tmp->length);
}
tmp = tmp->nextEdge;
}
}
}
visited[node2] = true;
dist[node2] = length;
}
}
//Function used to split a string into a vector
vector<std::string> &split(const string &s, char delim, vector<string> &elems) {
stringstream ss(s);
string item;
while (getline(ss, item, delim)) {
elems.push_back(item);
}
return elems;
}
//Function used to split a string into a vector
vector<string> split(const string &s, char delim) {
vector<string> elems;
split(s, delim, elems);
return elems;
}
// Main function reads input from file and runs quicksort
int _tmain(int argc, _TCHAR* argv[])
{
ifstream file("C:/Users/sean/Downloads/dijkstraData.txt", ios::in);
string tmp;
int shortestPath = 0;
// Add 1 to keep index inline with node number
int numNodes = 200 + 1;
// Create graph data structure
edge **graph = new edge*[200+1];
// Create structure to hold the distance data for each instance of node 1 to node X
vector<int> dist(numNodes + 1);
// Initialize the graph to be empty and have "infinite" distances
for (int i = 0; i < numNodes; i++)
{
graph[i] = NULL;
dist[i] = 1000000;
}
//Read file into graph structure
while (!file.eof())
{
getline(file, tmp);
vector<string> splitLine = split(tmp, '\t');
if (splitLine.size() == 0)
continue;
for (int i = 1; i < (int)splitLine.size(); i++)
{
//Get comma separated node,length to create edge
vector<string> splitEdge = split(splitLine[i], ',');
edge *addEdge = new edge;
addEdge->node2 = stoi(splitEdge[0]);
addEdge->length = stoi(splitEdge[1]);
addEdge->nextEdge = graph[stoi(splitLine[0])];
graph[stoi(splitLine[0])] = addEdge;
}
}
file.close();
//Run Dijkstra's shortest path algorithm
Dijkstra(graph, dist, 1, numNodes);
// Output shortest path distances found
int i = 0;
for (int i = 1;i<numNodes; i++) {
printf("Node %i: ", i);
cout << dist[i] << endl;
}
// Desired shortest paths for the answers
int answers[10] = { 7, 37, 59, 82, 99, 115, 133, 165, 188, 197 };
// Print the answer
for (int i = 0; i < (int)size(answers); i++) {
cout << dist[answers[i]] << " ";
}
cout << endl;
getchar();
return 0;
}