forked from lincolnhard/mtcnn-head-detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimplewebcam.py
213 lines (195 loc) · 6.42 KB
/
simplewebcam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import math
import cv2
import caffe
import numpy as np
def gen_bbox(hotmap, offset, scale, th):
h, w = hotmap.shape
stride = 2
win_size = 12
hotmap = hotmap.reshape((h, w))
keep = hotmap > th
pos = np.where(keep)
score = hotmap[keep]
offset = offset[:, keep]
x, y = pos[1], pos[0]
x1 = stride * x
y1 = stride * y
x2 = x1 + win_size
y2 = y1 + win_size
x1 = x1 / scale
y1 = y1 / scale
x2 = x2 / scale
y2 = y2 / scale
bbox = np.vstack([x1, y1, x2, y2, score, offset]).transpose()
return bbox.astype(np.float32)
def nms(dets, thresh, meth='Union'):
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
scores = dets[:, 4]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
if meth == 'Union':
ovr = inter / (areas[i] + areas[order[1:]] - inter)
else:
ovr = inter / np.minimum(areas[i], areas[order[1:]])
inds = np.where(ovr <= thresh)[0]
order = order[inds + 1]
return keep
def bbox_reg(bboxes):
w = bboxes[:, 2] - bboxes[:, 0]
h = bboxes[:, 3] - bboxes[:, 1]
bboxes[:, 0] += bboxes[:, 5] * w
bboxes[:, 1] += bboxes[:, 6] * h
bboxes[:, 2] += bboxes[:, 7] * w
bboxes[:, 3] += bboxes[:, 8] * h
return bboxes
def make_square(bboxes):
x_center = (bboxes[:, 0] + bboxes[:, 2]) / 2
y_center = (bboxes[:, 1] + bboxes[:, 3]) / 2
w = bboxes[:, 2] - bboxes[:, 0]
h = bboxes[:, 3] - bboxes[:, 1]
size = np.vstack([w, h]).max(axis=0).transpose()
bboxes[:, 0] = x_center - size / 2
bboxes[:, 2] = x_center + size / 2
bboxes[:, 1] = y_center - size / 2
bboxes[:, 3] = y_center + size / 2
return bboxes
def crop_face(img, bbox, wrap=True):
height, width = img.shape[:-1]
x1, y1, x2, y2 = bbox
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
if x1 >= width or y1 >= height or x2 <= 0 or y2 <= 0:
print '[WARN] ridiculous x1, y1, x2, y2'
return None
if x1 < 0 or y1 < 0 or x2 > width or y2 > height:
# out of boundary, still crop the face
if not wrap:
return None
h, w = y2 - y1, x2 - x1
patch = np.zeros((h, w, 3), dtype=np.uint8)
vx1 = 0 if x1 < 0 else x1
vy1 = 0 if y1 < 0 else y1
vx2 = width if x2 > width else x2
vy2 = height if y2 > height else y2
sx = -x1 if x1 < 0 else 0
sy = -y1 if y1 < 0 else 0
vw = vx2 - vx1
vh = vy2 - vy1
patch[sy:sy+vh, sx:sx+vw] = img[vy1:vy2, vx1:vx2]
return patch
return img[y1:y2, x1:x2]
def mtcnn_detection(img, scales, width, height):
### pnet ###
bboxes_in_all_scales = np.zeros((0, 4 + 1 + 4), dtype=np.float32)
for scale in scales:
w, h = int(math.ceil(scale * width)), int(math.ceil(scale * height))
data = cv2.resize(img, (w, h))
data = data.transpose((2, 0, 1)).astype(np.float32) # order now: ch, height, width
data = (data - 128) / 128
data = data.reshape((1, 3, h, w)) # order now: batch, ch, height, width
pnet.blobs['data'].reshape(*data.shape)
pnet.blobs['data'].data[...] = data
pnet.forward()
prob = pnet.blobs['prob'].data
bbox_pred = pnet.blobs['bbox_pred'].data
bboxes = gen_bbox(prob[0][1], bbox_pred[0], scale, 0.6)
keep = nms(bboxes, 0.5) # nms in each scale
bboxes = bboxes[keep]
bboxes_in_all_scales = np.vstack([bboxes_in_all_scales, bboxes])
# nms in total
keep = nms(bboxes_in_all_scales, 0.7)
bboxes_in_all_scales = bboxes_in_all_scales[keep]
bboxes_in_all_scales = bbox_reg(bboxes_in_all_scales)
bboxes_in_all_scales = make_square(bboxes_in_all_scales)
if len(bboxes_in_all_scales) == 0:
return bboxes_in_all_scales
### rnet ###
n = len(bboxes_in_all_scales)
data = np.zeros((n, 3, 24, 24), dtype=np.float32)
for i, bbox in enumerate(bboxes_in_all_scales):
face = crop_face(img, bbox[:4])
data[i] = cv2.resize(face, (24, 24)).transpose((2, 0, 1))
data = (data - 128) / 128
rnet.blobs['data'].reshape(*data.shape)
rnet.blobs['data'].data[...] = data
rnet.forward()
prob = rnet.blobs['prob'].data
bbox_pred = rnet.blobs['bbox_pred'].data
prob = prob.reshape(n, 2)
bbox_pred = bbox_pred.reshape(n, 4)
keep = prob[:, 1] > 0.7
bboxes_in_all_scales = bboxes_in_all_scales[keep]
bboxes_in_all_scales[:, 4] = prob[keep, 1]
bboxes_in_all_scales[:, 5:9] = bbox_pred[keep]
keep = nms(bboxes_in_all_scales, 0.7)
bboxes_in_all_scales = bboxes_in_all_scales[keep]
bboxes_in_all_scales = bbox_reg(bboxes_in_all_scales)
bboxes_in_all_scales = make_square(bboxes_in_all_scales)
if len(bboxes_in_all_scales) == 0:
return bboxes_in_all_scales
### onet ###
n = len(bboxes_in_all_scales)
data = np.zeros((n, 3, 48, 48), dtype=np.float32)
for i, bbox in enumerate(bboxes_in_all_scales):
face = crop_face(img, bbox[:4])
data[i] = cv2.resize(face, (48, 48)).transpose((2, 0, 1))
data = (data - 128) / 128
onet.blobs['data'].reshape(*data.shape)
onet.blobs['data'].data[...] = data
onet.forward()
prob = onet.blobs['prob'].data
bbox_pred = onet.blobs['bbox_pred'].data
prob = prob.reshape(n, 2)
bbox_pred = bbox_pred.reshape(n, 4)
keep = prob[:, 1] > 0.4
bboxes_in_all_scales = bboxes_in_all_scales[keep]
bboxes_in_all_scales[:, 4] = prob[keep, 1]
bboxes_in_all_scales[:, 5:9] = bbox_pred[keep]
bboxes_in_all_scales = bbox_reg(bboxes_in_all_scales)
keep = nms(bboxes_in_all_scales, 0.5, 'Min')
bboxes_in_all_scales = bboxes_in_all_scales[keep]
return bboxes_in_all_scales
pnet = caffe.Net('proto/p.prototxt', 'tmp/pnet_iter_327000.caffemodel', caffe.TEST)
rnet = caffe.Net('proto/r.prototxt', 'tmp/rnet_iter_91000.caffemodel', caffe.TEST)
onet = caffe.Net('proto/o.prototxt', 'tmp/onet_iter_32000.caffemodel', caffe.TEST)
cap = cv2.VideoCapture(0)
ret, img = cap.read()
min_size = 24
factor = 0.709
base = 12. / min_size
height, width = img.shape[:-1]
l = min(width, height)
l *= base
scales = []
while l > 12:
scales.append(base)
base *= factor
l *= factor
while(True):
ret, img = cap.read()
onet_boxes = mtcnn_detection(img, scales, width, height)
imgdraw_onet = img.copy()
for i in range(len(onet_boxes)):
x1, y1, x2, y2, score = onet_boxes[i, :5]
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
cv2.rectangle(imgdraw_onet, (x1, y1), (x2, y2), (0, 0, 255), 2)
cv2.putText(imgdraw_onet, '%.03f'%score, (x1, y1), cv2.FONT_HERSHEY_PLAIN, 1, (0, 255, 0))
cv2.imshow("mtcnn", imgdraw_onet)
k = cv2.waitKey(1) & 0xff
if k == 27 :
break
cap.release()
cv2.destroyAllWindows()