-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodels.py
159 lines (130 loc) · 5.81 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import os
import torch
import torch.nn as nn
from torchvision.models import resnet, densenet, vgg
from tqdm import tqdm, tqdm_notebook
from utils import AverageMeter
def conv_block(in_channels, out_channels, batch_norm=True):
block = nn.Sequential(nn.Conv2d(in_channels, out_channels, 3, 1, 1),
nn.ReLU(),
nn.BatchNorm2d(out_channels))
return block
class SimpleModel(nn.Module):
def __init__(self, num_classes):
super().__init__()
self.features = nn.Sequential(conv_block(3, 32),
nn.MaxPool2d(2),
conv_block(32, 64),
conv_block(64, 64),
nn.MaxPool2d(2),
conv_block(64, 128),
conv_block(128, 128),
nn.AdaptiveAvgPool2d(7))
self.classifier = nn.Sequential(nn.Linear(7 * 7 * 128, 1024),
nn.Dropout(),
nn.Linear(1024, num_classes))
def forward(self, x):
x = self.features(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
return x
class Model(nn.Module):
def __init__(self, num_classes, param, epoch=0):
super(Model, self).__init__()
if param.model_name == "resnet18":
self.net = resnet.resnet18(pretrained=True)
elif param.model_name == "resnet34":
self.net = resnet.resnet34(pretrained=True)
elif param.model_name == "resnet50":
self.net = resnet.resnet50(pretrained=True)
elif param.model_name == "resnet101":
self.net = resnet.resnet101(pretrained=True)
elif param.model_name == "resnet152":
self.net = resnet.resnet152(pretrained=True)
elif param.model_name == "densenet121":
self.net = densenet.densenet121(pretrained=True)
elif param.model_name == "vgg11":
self.net = vgg.vgg11_bn(pretrained=True)
elif param.model_name == "vggb13":
self.net = vgg.vgg13_bn(pretrained=True)
elif param.model_name == "vggb13":
self.net = vgg.vgg19_bn(pretrained=True)
else:
self.net = SimpleModel(num_classes)
if 'resnet' in param.model_name:
in_feature = self.net.fc.in_features
self.net.fc = nn.Linear(in_feature, num_classes)
if 'densenet' in param.model_name:
in_feature = self.net.classifier.in_features
self.net.classifier = nn.Linear(in_feature, num_classes)
if 'vgg11' in param.model_name:
self.net.classifier = nn.Sequential(
nn.Linear(512 * 7 * 7, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, num_classes),
)
self.device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
self.param = param
self.epoch = epoch
self.to(self.device)
def forward(self, x):
return self.net(x)
def train_model(self, data_loader, criterion, optimizer, teacher_preds, param):
self.train()
loss_avg = AverageMeter()
acc_avg = AverageMeter()
loss_avg.reset()
acc_avg.reset()
for step, (images, targets) in enumerate(tqdm(data_loader, desc=f'Train Epoch {self.epoch}')):
images: torch.Tensor = images.to(self.device)
targets: torch.Tensor = targets.to(self.device)
preds: torch.Tensor = self.forward(images)
loss: torch.Tensor = criterion(preds, targets, torch.from_numpy(teacher_preds[step]).type_as(preds), param)
optimizer.zero_grad()
loss.backward()
optimizer.step()
preds = preds.argmax(dim=1)
loss_avg.update(loss.mean().item())
acc_avg.update((preds == targets).sum().item() / images.shape[0])
self.epoch += 1
return loss_avg.avg, acc_avg.avg
def validate_model(self, data_loader, criterion, teacher_preds, param):
with torch.no_grad():
self.eval()
loss_avg = AverageMeter()
acc_avg = AverageMeter()
loss_avg.reset()
acc_avg.reset()
for step, (images, targets) in enumerate(tqdm(data_loader, desc=f'Validation Epoch {self.epoch}')):
images: torch.Tensor = images.to(self.device)
targets: torch.Tensor = targets.to(self.device)
preds: torch.Tensor = self.forward(images)
loss: torch.Tensor = criterion(preds, targets, torch.from_numpy(teacher_preds[step]).to(self.device),
param)
preds = preds.argmax(dim=1)
loss_avg.update(loss.mean().item())
acc_avg.update((preds == targets).sum().item() / images.shape[0])
return loss_avg.avg, acc_avg.avg
def predict_image(self, image: torch.Tensor):
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
self.eval()
self.to(device)
pred: torch.Tensor = self.forward(image)
pred = pred.argmax(dim=1)
return pred
def fetch_output(self, data_loader):
self.eval()
results = []
for images, targets in tqdm(data_loader, desc=f'Fetch answer'):
images = images.to(self.device)
results += [self.forward(images).detach().cpu().numpy()]
return results
def load_params(self, path):
if not os.path.exists(path):
print(f"[*] There is no params in {path}")
return
self.load_state_dict(torch.load(path, map_location=self.device))