-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel.py
228 lines (192 loc) · 6.63 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import time
import torch
import torch.nn as nn
# 导入模型定义方法
import models
# 导入工具类
from utils.eval import accuracy
from utils.misc import AverageMeter
import numpy as np
# 导入进度条库
from progress.bar import Bar
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def train(train_loader, model, criterion, optimizer):
'''
模型训练
:param train_loader:
:param model:
:param criterion:
:param optimizer:
:return:
'''
# 定义保存更新变量
data_time = AverageMeter()
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
end = time.time()
#################
# train the model
#################
model.train()
# 训练每批数据,然后进行模型的训练
## 定义bar 变量
bar = Bar('Processing', max=len(train_loader))
for batch_index, (inputs, targets) in enumerate(train_loader):
data_time.update(time.time() - end)
# move tensors to GPU if cuda is_available
inputs, targets = inputs.to(device), targets.to(device)
# 模型的预测
outputs = model(inputs)
# 在进行反向传播之前,使用zero_grad方法清空梯度
optimizer.zero_grad()
# 计算loss
loss = criterion(outputs, targets)
# backward pass:
loss.backward()
# perform as single optimization step (parameter update)
optimizer.step()
# 计算acc和变量更新
prec1, _ = accuracy(outputs.data, targets.data, topk=(1, 1))
losses.update(loss.item(), inputs.size(0))
top1.update(prec1.item(), inputs.size(0))
batch_time.update(time.time() - end)
end = time.time()
# plot progress
## 把主要的参数打包放进bar中
# plot progress
bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | top1: {top1: .4f}'.format(
batch=batch_index + 1,
size=len(train_loader),
data=data_time.val,
bt=batch_time.val,
total=bar.elapsed_td,
eta=bar.eta_td,
loss=losses.avg,
top1=top1.avg
)
bar.next()
bar.finish()
return (losses.avg, top1.avg)
def evaluate(val_loader, model, criterion, test=None):
'''
模型评估
:param val_loader:
:param model:
:param criterion:
:param test:
:return:
'''
global best_acc
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
predict_all = np.array([], dtype=int)
labels_all = np.array([], dtype=int)
#################
# val the model
#################
model.eval()
end = time.time()
# 训练每批数据,然后进行模型的训练
## 定义bar 变量
bar = Bar('Processing', max=len(val_loader))
for batch_index, (inputs, targets) in enumerate(val_loader):
data_time.update(time.time() - end)
# move tensors to GPU if cuda is_available
inputs, targets = inputs.to(device), targets.to(device)
# 模型的预测
outputs = model(inputs)
# 计算loss
loss = criterion(outputs, targets)
# 计算acc和变量更新
prec1, _ = accuracy(outputs.data, targets.data, topk=(1, 1))
losses.update(loss.item(), inputs.size(0))
top1.update(prec1.item(), inputs.size(0))
batch_time.update(time.time() - end)
end = time.time()
# 评估混淆矩阵的数据
targets = targets.data.cpu().numpy() # 真实数据的y数值
predic = torch.max(outputs.data, 1)[1].cpu().numpy() # 预测数据y数值
labels_all = np.append(labels_all, targets) # 数据赋值
predict_all = np.append(predict_all, predic)
## 把主要的参数打包放进bar中
# plot progress
bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | top1: {top1: .4f}'.format(
batch=batch_index + 1,
size=len(val_loader),
data=data_time.val,
bt=batch_time.val,
total=bar.elapsed_td,
eta=bar.eta_td,
loss=losses.avg,
top1=top1.avg
)
bar.next()
bar.finish()
if test:
return (losses.avg, top1.avg, predict_all, labels_all)
else:
return (losses.avg, top1.avg)
def set_parameter_requires_grad(model, feature_extract):
'''
:param model: 模型
:param feature_extract: true 固定特征抽取层
:return:
'''
if feature_extract:
for param in model.parameters():
# 不需要更新梯度,冻结某些层的梯度
param.requires_grad = False
def initital_model(model_name, num_classes, feature_extract=True):
"""
基于提供的pre_trained_model 进行初始化
:param model_name:
提供的模型名称,例如: resnext101_32x16d/resnext101_32x8d..
:param num_classes: 图片分类个数
:param feature_extract: 设置true ,固定特征提取层,优化全连接的分类器
:return:
"""
model_ft = None
if model_name == 'resnext101_32x16d':
# 加载facebook pre_trained_model resnext101,默认1000 类
model_ft = models.resnext101_32x16d_wsl()
# 设置 固定特征提取层
set_parameter_requires_grad(model_ft, feature_extract)
# 调整分类个数
num_ftrs = model_ft.fc.in_features
# 修改fc 的分类个数
model_ft.fc = nn.Sequential(
nn.Dropout(0.2),
nn.Linear(in_features=num_ftrs, out_features=num_classes)
)
elif model_name == 'resnext101_32x8d':
# 加载facebook pre_trained_model resnext101,默认1000 类
model_ft = models.resnext101_32x8d()
# 设置 固定特征提取层
set_parameter_requires_grad(model_ft, feature_extract)
# 调整分类个数
num_ftrs = model_ft.fc.in_features
# 修改fc 的分类个数
model_ft.fc = nn.Sequential(
nn.Dropout(0.2),
nn.Linear(in_features=num_ftrs, out_features=num_classes)
)
else:
print('Invalid model name,exiting..')
exit()
return model_ft
import codecs
def class_id2name():
'''
标签关系映射
:return:
'''
clz_id2name = {}
for line in codecs.open('data/garbage_label.txt', 'r', encoding='utf-8'):
line = line.strip()
_id = line.split(":")[0]
_name = line.split(":")[1]
clz_id2name[int(_id)] = _name
return clz_id2name