-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvgg16.py
47 lines (39 loc) · 1.35 KB
/
vgg16.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import torch
import torch.nn as nn
VGG16 = [64, 64, "M", 128, 128, "M", 256, 256, 256, "M", 512, 512, 512, "M", 512, 512, 512, "M"]
class VGGNets(nn.Module):
def __init__(self, in_channels, num_classes):
super(VGGNets, self).__init__()
self.in_channels = in_channels
self.conv_layers = self.create_conv_layers(VGG16)
self.fcs = nn.Sequential(
nn.Linear(512*7*7, 4096),
nn.ReLU(),
nn.Dropout(p=0.5),
nn.Linear(4096, 4096),
nn.ReLU(),
nn.Dropout(p=0.5),
nn.Linear(4096, num_classes)
)
def forward(self, x):
x = self.conv_layers(x)
x = torch.flatten(x, 1)
x = self.fcs(x)
return x
def create_conv_layers(self, structure):
layers = []
in_channels = self.in_channels
for x in structure:
if x == "M":
layers += [nn.MaxPool2d(kernel_size=(2, 2), stride=2)]
else:
out_channels = x
layers += [
nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=(3, 3), stride=1, padding=1),
nn.ReLU()
]
in_channels = x
return nn.Sequential(*layers)
model = VGGNets(in_channels=3, num_classes=10)
x = torch.randn(3, 3, 224, 224)
model(x)