1
+ @article {martins2012bbb ,
2
+ author = { Martins, Ines Filipa and Teixeira, Ana L and Pinheiro, Luis and Falcao, Andre O} ,
3
+ doi = { 10.1021/ci300124c} ,
4
+ journal = { Journal of Chemical Information and Modeling} ,
5
+ number = { 6} ,
6
+ pages = { 1686--1697} ,
7
+ title = { {A Bayesian Approach to in Silico Blood-Brain Barrier Penetration Modeling}} ,
8
+ url = { https://doi.org/10.1021/ci300124c} ,
9
+ volume = { 52} ,
10
+ year = { 2012}
11
+ }
12
+
1
13
@article {ramakrishnan2014quantum ,
2
14
title = { Quantum chemistry structures and properties of 134 kilo molecules} ,
3
15
author = { Ramakrishnan, Raghunathan and Dral, Pavlo O and Rupp, Matthias and Von Lilienfeld, O Anatole} ,
@@ -1642,6 +1654,7 @@ @article{zhang2021motif
1642
1654
pages ={ 15870--15882} ,
1643
1655
year ={ 2021}
1644
1656
}
1657
+
1645
1658
@article {you2020graph ,
1646
1659
title ={ Graph contrastive learning with augmentations} ,
1647
1660
author ={ You, Yuning and Chen, Tianlong and Sui, Yongduo and Chen, Ting and Wang, Zhangyang and Shen, Yang} ,
@@ -1650,19 +1663,22 @@ @article{you2020graph
1650
1663
pages ={ 5812--5823} ,
1651
1664
year ={ 2020}
1652
1665
}
1666
+
1653
1667
@inproceedings {sun2021mocl ,
1654
1668
title ={ MoCL: data-driven molecular fingerprint via knowledge-aware contrastive learning from molecular graph} ,
1655
1669
author ={ Sun, Mengying and Xing, Jing and Wang, Huijun and Chen, Bin and Zhou, Jiayu} ,
1656
1670
booktitle ={ Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery \& Data Mining} ,
1657
1671
pages ={ 3585--3594} ,
1658
1672
year ={ 2021}
1659
1673
}
1674
+
1660
1675
@article {liu2021pre ,
1661
1676
title ={ Pre-training molecular graph representation with 3d geometry} ,
1662
1677
author ={ Liu, Shengchao and Wang, Hanchen and Liu, Weiyang and Lasenby, Joan and Guo, Hongyu and Tang, Jian} ,
1663
1678
journal ={ arXiv preprint arXiv:2110.07728} ,
1664
1679
year ={ 2021}
1665
1680
}
1681
+
1666
1682
@inproceedings {erhan2010does ,
1667
1683
title ={ Why does unsupervised pre-training help deep learning?} ,
1668
1684
author ={ Erhan, Dumitru and Courville, Aaron and Bengio, Yoshua and Vincent, Pascal} ,
@@ -1671,19 +1687,22 @@ @inproceedings{erhan2010does
1671
1687
year ={ 2010} ,
1672
1688
organization ={ JMLR Workshop and Conference Proceedings}
1673
1689
}
1690
+
1674
1691
@article {xie2022self ,
1675
1692
title ={ Self-supervised learning of graph neural networks: A unified review} ,
1676
1693
author ={ Xie, Yaochen and Xu, Zhao and Zhang, Jingtun and Wang, Zhengyang and Ji, Shuiwang} ,
1677
1694
journal ={ IEEE Transactions on Pattern Analysis and Machine Intelligence} ,
1678
1695
year ={ 2022} ,
1679
1696
publisher ={ IEEE}
1680
1697
}
1698
+
1681
1699
@article {mao2020survey ,
1682
1700
title ={ A survey on self-supervised pre-training for sequential transfer learning in neural networks} ,
1683
1701
author ={ Mao, Huanru Henry} ,
1684
1702
journal ={ arXiv preprint arXiv:2007.00800} ,
1685
1703
year ={ 2020}
1686
1704
}
1705
+
1687
1706
@inproceedings {finn2017model ,
1688
1707
title ={ Model-agnostic meta-learning for fast adaptation of deep networks} ,
1689
1708
author ={ Finn, Chelsea and Abbeel, Pieter and Levine, Sergey} ,
@@ -1692,6 +1711,7 @@ @inproceedings{finn2017model
1692
1711
year ={ 2017} ,
1693
1712
organization ={ PMLR}
1694
1713
}
1714
+
1695
1715
@inproceedings {wang2019smiles ,
1696
1716
title ={ SMILES-BERT: large scale unsupervised pre-training for molecular property prediction} ,
1697
1717
author ={ Wang, Sheng and Guo, Yuzhi and Wang, Yuhong and Sun, Hongmao and Huang, Junzhou} ,
0 commit comments