Skip to content

Commit aa2294d

Browse files
Pretraining chapter [WIP] (#128)
* What is pretraining? * Added more info about different applications, please paraphrase * Add a starting point * Rough draft with some working code - Thanks Sam! * add figs and refs * removed old ref * repeated paragraph * Transfer learning code example * Regression example for finetuning * forgot to save the notebook * Update pretraining.ipynb * added future section and fixed installs * quick text edits Co-authored-by: Samantha Cox <[email protected]> Co-authored-by: Sam Cox <[email protected]>
1 parent 3d5b8d4 commit aa2294d

File tree

7 files changed

+4864
-0
lines changed

7 files changed

+4864
-0
lines changed

_static/images/TL_FT.gif

270 KB
Loading

_static/images/ssl_graphs.png

62.3 KB
Loading
415 KB
Loading

data/BBBP.csv

Lines changed: 2051 additions & 0 deletions
Large diffs are not rendered by default.

dl/pretraining.ipynb

Lines changed: 2792 additions & 0 deletions
Large diffs are not rendered by default.

package/setup.py

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -37,6 +37,7 @@
3737
"rdkit>=2022",
3838
"sympy",
3939
"e3nn",
40+
"simpletransformers",
4041
],
4142
test_suite="tests",
4243
long_description="""

references.bib

Lines changed: 20 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,15 @@
1+
@article{martins2012bbb,
2+
author = {Martins, Ines Filipa and Teixeira, Ana L and Pinheiro, Luis and Falcao, Andre O},
3+
doi = {10.1021/ci300124c},
4+
journal = {Journal of Chemical Information and Modeling},
5+
number = {6},
6+
pages = {1686--1697},
7+
title = {{A Bayesian Approach to in Silico Blood-Brain Barrier Penetration Modeling}},
8+
url = {https://doi.org/10.1021/ci300124c},
9+
volume = {52},
10+
year = {2012}
11+
}
12+
113
@article{ramakrishnan2014quantum,
214
title = {Quantum chemistry structures and properties of 134 kilo molecules},
315
author = {Ramakrishnan, Raghunathan and Dral, Pavlo O and Rupp, Matthias and Von Lilienfeld, O Anatole},
@@ -1642,6 +1654,7 @@ @article{zhang2021motif
16421654
pages={15870--15882},
16431655
year={2021}
16441656
}
1657+
16451658
@article{you2020graph,
16461659
title={Graph contrastive learning with augmentations},
16471660
author={You, Yuning and Chen, Tianlong and Sui, Yongduo and Chen, Ting and Wang, Zhangyang and Shen, Yang},
@@ -1650,19 +1663,22 @@ @article{you2020graph
16501663
pages={5812--5823},
16511664
year={2020}
16521665
}
1666+
16531667
@inproceedings{sun2021mocl,
16541668
title={MoCL: data-driven molecular fingerprint via knowledge-aware contrastive learning from molecular graph},
16551669
author={Sun, Mengying and Xing, Jing and Wang, Huijun and Chen, Bin and Zhou, Jiayu},
16561670
booktitle={Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery \& Data Mining},
16571671
pages={3585--3594},
16581672
year={2021}
16591673
}
1674+
16601675
@article{liu2021pre,
16611676
title={Pre-training molecular graph representation with 3d geometry},
16621677
author={Liu, Shengchao and Wang, Hanchen and Liu, Weiyang and Lasenby, Joan and Guo, Hongyu and Tang, Jian},
16631678
journal={arXiv preprint arXiv:2110.07728},
16641679
year={2021}
16651680
}
1681+
16661682
@inproceedings{erhan2010does,
16671683
title={Why does unsupervised pre-training help deep learning?},
16681684
author={Erhan, Dumitru and Courville, Aaron and Bengio, Yoshua and Vincent, Pascal},
@@ -1671,19 +1687,22 @@ @inproceedings{erhan2010does
16711687
year={2010},
16721688
organization={JMLR Workshop and Conference Proceedings}
16731689
}
1690+
16741691
@article{xie2022self,
16751692
title={Self-supervised learning of graph neural networks: A unified review},
16761693
author={Xie, Yaochen and Xu, Zhao and Zhang, Jingtun and Wang, Zhengyang and Ji, Shuiwang},
16771694
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
16781695
year={2022},
16791696
publisher={IEEE}
16801697
}
1698+
16811699
@article{mao2020survey,
16821700
title={A survey on self-supervised pre-training for sequential transfer learning in neural networks},
16831701
author={Mao, Huanru Henry},
16841702
journal={arXiv preprint arXiv:2007.00800},
16851703
year={2020}
16861704
}
1705+
16871706
@inproceedings{finn2017model,
16881707
title={Model-agnostic meta-learning for fast adaptation of deep networks},
16891708
author={Finn, Chelsea and Abbeel, Pieter and Levine, Sergey},
@@ -1692,6 +1711,7 @@ @inproceedings{finn2017model
16921711
year={2017},
16931712
organization={PMLR}
16941713
}
1714+
16951715
@inproceedings{wang2019smiles,
16961716
title={SMILES-BERT: large scale unsupervised pre-training for molecular property prediction},
16971717
author={Wang, Sheng and Guo, Yuzhi and Wang, Yuhong and Sun, Hongmao and Huang, Junzhou},

0 commit comments

Comments
 (0)