forked from gbenson/binutils-gdb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolib.c
1717 lines (1397 loc) · 51.9 KB
/
solib.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* Handle shared libraries for GDB, the GNU Debugger.
Copyright (C) 1990-2015 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include <sys/types.h>
#include <fcntl.h>
#include "symtab.h"
#include "bfd.h"
#include "symfile.h"
#include "objfiles.h"
#include "gdbcore.h"
#include "command.h"
#include "target.h"
#include "frame.h"
#include "gdb_regex.h"
#include "inferior.h"
#include "environ.h"
#include "language.h"
#include "gdbcmd.h"
#include "completer.h"
#include "filenames.h" /* for DOSish file names */
#include "exec.h"
#include "solist.h"
#include "observer.h"
#include "readline/readline.h"
#include "remote.h"
#include "solib.h"
#include "interps.h"
#include "filesystem.h"
#include "gdb_bfd.h"
#include "filestuff.h"
/* Architecture-specific operations. */
/* Per-architecture data key. */
static struct gdbarch_data *solib_data;
static void *
solib_init (struct obstack *obstack)
{
struct target_so_ops **ops;
ops = OBSTACK_ZALLOC (obstack, struct target_so_ops *);
*ops = current_target_so_ops;
return ops;
}
static const struct target_so_ops *
solib_ops (struct gdbarch *gdbarch)
{
const struct target_so_ops **ops = gdbarch_data (gdbarch, solib_data);
return *ops;
}
/* Set the solib operations for GDBARCH to NEW_OPS. */
void
set_solib_ops (struct gdbarch *gdbarch, const struct target_so_ops *new_ops)
{
const struct target_so_ops **ops = gdbarch_data (gdbarch, solib_data);
*ops = new_ops;
}
/* external data declarations */
/* FIXME: gdbarch needs to control this variable, or else every
configuration needs to call set_solib_ops. */
struct target_so_ops *current_target_so_ops;
/* List of known shared objects */
#define so_list_head current_program_space->so_list
/* Local function prototypes */
/* If non-empty, this is a search path for loading non-absolute shared library
symbol files. This takes precedence over the environment variables PATH
and LD_LIBRARY_PATH. */
static char *solib_search_path = NULL;
static void
show_solib_search_path (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
fprintf_filtered (file, _("The search path for loading non-absolute "
"shared library symbol files is %s.\n"),
value);
}
/* Same as HAVE_DOS_BASED_FILE_SYSTEM, but useable as an rvalue. */
#if (HAVE_DOS_BASED_FILE_SYSTEM)
# define DOS_BASED_FILE_SYSTEM 1
#else
# define DOS_BASED_FILE_SYSTEM 0
#endif
/* Return the full pathname of a binary file (the main executable
or a shared library file), or NULL if not found. The returned
pathname is malloc'ed and must be freed by the caller. If FD
is non-NULL, *FD is set to either -1 or an open file handle for
the binary file.
Global variable GDB_SYSROOT is used as a prefix directory
to search for binary files if they have an absolute path.
If GDB_SYSROOT starts with "target:" and target filesystem
is the local filesystem then the "target:" prefix will be
stripped before the search starts. This ensures that the
same search algorithm is used for local files regardless of
whether a "target:" prefix was used.
Global variable SOLIB_SEARCH_PATH is used as a prefix directory
(or set of directories, as in LD_LIBRARY_PATH) to search for all
shared libraries if not found in either the sysroot (if set) or
the local filesystem. SOLIB_SEARCH_PATH is not used when searching
for the main executable.
Search algorithm:
* If a sysroot is set and path is absolute:
* Search for sysroot/path.
* else
* Look for it literally (unmodified).
* If IS_SOLIB is non-zero:
* Look in SOLIB_SEARCH_PATH.
* If available, use target defined search function.
* If NO sysroot is set, perform the following two searches:
* Look in inferior's $PATH.
* If IS_SOLIB is non-zero:
* Look in inferior's $LD_LIBRARY_PATH.
*
* The last check avoids doing this search when targetting remote
* machines since a sysroot will almost always be set.
*/
static char *
solib_find_1 (char *in_pathname, int *fd, int is_solib)
{
const struct target_so_ops *ops = solib_ops (target_gdbarch ());
int found_file = -1;
char *temp_pathname = NULL;
const char *fskind = effective_target_file_system_kind ();
struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
char *sysroot = gdb_sysroot;
int prefix_len, orig_prefix_len;
/* If the absolute prefix starts with "target:" but the filesystem
accessed by the target_fileio_* methods is the local filesystem
then we strip the "target:" prefix now and work with the local
filesystem. This ensures that the same search algorithm is used
for all local files regardless of whether a "target:" prefix was
used. */
if (is_target_filename (sysroot) && target_filesystem_is_local ())
sysroot += strlen (TARGET_SYSROOT_PREFIX);
/* Strip any trailing slashes from the absolute prefix. */
prefix_len = orig_prefix_len = strlen (sysroot);
while (prefix_len > 0 && IS_DIR_SEPARATOR (sysroot[prefix_len - 1]))
prefix_len--;
if (prefix_len == 0)
sysroot = NULL;
else if (prefix_len != orig_prefix_len)
{
sysroot = savestring (sysroot, prefix_len);
make_cleanup (xfree, sysroot);
}
/* If we're on a non-DOS-based system, backslashes won't be
understood as directory separator, so, convert them to forward
slashes, iff we're supposed to handle DOS-based file system
semantics for target paths. */
if (!DOS_BASED_FILE_SYSTEM && fskind == file_system_kind_dos_based)
{
char *p;
/* Avoid clobbering our input. */
p = alloca (strlen (in_pathname) + 1);
strcpy (p, in_pathname);
in_pathname = p;
for (; *p; p++)
{
if (*p == '\\')
*p = '/';
}
}
/* Note, we're interested in IS_TARGET_ABSOLUTE_PATH, not
IS_ABSOLUTE_PATH. The latter is for host paths only, while
IN_PATHNAME is a target path. For example, if we're supposed to
be handling DOS-like semantics we want to consider a
'c:/foo/bar.dll' path as an absolute path, even on a Unix box.
With such a path, before giving up on the sysroot, we'll try:
1st attempt, c:/foo/bar.dll ==> /sysroot/c:/foo/bar.dll
2nd attempt, c:/foo/bar.dll ==> /sysroot/c/foo/bar.dll
3rd attempt, c:/foo/bar.dll ==> /sysroot/foo/bar.dll
*/
if (!IS_TARGET_ABSOLUTE_PATH (fskind, in_pathname) || sysroot == NULL)
temp_pathname = xstrdup (in_pathname);
else
{
int need_dir_separator;
/* Concatenate the sysroot and the target reported filename. We
may need to glue them with a directory separator. Cases to
consider:
| sysroot | separator | in_pathname |
|-----------------+-----------+----------------|
| /some/dir | / | c:/foo/bar.dll |
| /some/dir | | /foo/bar.dll |
| target: | | c:/foo/bar.dll |
| target: | | /foo/bar.dll |
| target:some/dir | / | c:/foo/bar.dll |
| target:some/dir | | /foo/bar.dll |
IOW, we don't need to add a separator if IN_PATHNAME already
has one, or when the the sysroot is exactly "target:".
There's no need to check for drive spec explicitly, as we only
get here if IN_PATHNAME is considered an absolute path. */
need_dir_separator = !(IS_DIR_SEPARATOR (in_pathname[0])
|| strcmp (TARGET_SYSROOT_PREFIX, sysroot) == 0);
/* Cat the prefixed pathname together. */
temp_pathname = concat (sysroot,
need_dir_separator ? SLASH_STRING : "",
in_pathname, (char *) NULL);
}
/* Handle files to be accessed via the target. */
if (is_target_filename (temp_pathname))
{
if (fd != NULL)
*fd = -1;
do_cleanups (old_chain);
return temp_pathname;
}
/* Now see if we can open it. */
found_file = gdb_open_cloexec (temp_pathname, O_RDONLY | O_BINARY, 0);
if (found_file < 0)
xfree (temp_pathname);
/* If the search in gdb_sysroot failed, and the path name has a
drive spec (e.g, c:/foo), try stripping ':' from the drive spec,
and retrying in the sysroot:
c:/foo/bar.dll ==> /sysroot/c/foo/bar.dll. */
if (found_file < 0
&& sysroot != NULL
&& HAS_TARGET_DRIVE_SPEC (fskind, in_pathname))
{
int need_dir_separator = !IS_DIR_SEPARATOR (in_pathname[2]);
char *drive = savestring (in_pathname, 1);
temp_pathname = concat (sysroot,
SLASH_STRING,
drive,
need_dir_separator ? SLASH_STRING : "",
in_pathname + 2, (char *) NULL);
xfree (drive);
found_file = gdb_open_cloexec (temp_pathname, O_RDONLY | O_BINARY, 0);
if (found_file < 0)
{
xfree (temp_pathname);
/* If the search in gdb_sysroot still failed, try fully
stripping the drive spec, and trying once more in the
sysroot before giving up.
c:/foo/bar.dll ==> /sysroot/foo/bar.dll. */
temp_pathname = concat (sysroot,
need_dir_separator ? SLASH_STRING : "",
in_pathname + 2, (char *) NULL);
found_file = gdb_open_cloexec (temp_pathname, O_RDONLY | O_BINARY, 0);
if (found_file < 0)
xfree (temp_pathname);
}
}
do_cleanups (old_chain);
/* We try to find the library in various ways. After each attempt,
either found_file >= 0 and temp_pathname is a malloc'd string, or
found_file < 0 and temp_pathname does not point to storage that
needs to be freed. */
if (found_file < 0)
temp_pathname = NULL;
/* If the search in gdb_sysroot failed, and the path name is
absolute at this point, make it relative. (openp will try and open the
file according to its absolute path otherwise, which is not what we want.)
Affects subsequent searches for this solib. */
if (found_file < 0 && IS_TARGET_ABSOLUTE_PATH (fskind, in_pathname))
{
/* First, get rid of any drive letters etc. */
while (!IS_TARGET_DIR_SEPARATOR (fskind, *in_pathname))
in_pathname++;
/* Next, get rid of all leading dir separators. */
while (IS_TARGET_DIR_SEPARATOR (fskind, *in_pathname))
in_pathname++;
}
/* If not found, and we're looking for a solib, search the
solib_search_path (if any). */
if (is_solib && found_file < 0 && solib_search_path != NULL)
found_file = openp (solib_search_path,
OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
in_pathname, O_RDONLY | O_BINARY, &temp_pathname);
/* If not found, and we're looking for a solib, next search the
solib_search_path (if any) for the basename only (ignoring the
path). This is to allow reading solibs from a path that differs
from the opened path. */
if (is_solib && found_file < 0 && solib_search_path != NULL)
found_file = openp (solib_search_path,
OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
target_lbasename (fskind, in_pathname),
O_RDONLY | O_BINARY, &temp_pathname);
/* If not found, and we're looking for a solib, try to use target
supplied solib search method. */
if (is_solib && found_file < 0 && ops->find_and_open_solib)
found_file = ops->find_and_open_solib (in_pathname, O_RDONLY | O_BINARY,
&temp_pathname);
/* If not found, next search the inferior's $PATH environment variable. */
if (found_file < 0 && sysroot == NULL)
found_file = openp (get_in_environ (current_inferior ()->environment,
"PATH"),
OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, in_pathname,
O_RDONLY | O_BINARY, &temp_pathname);
/* If not found, and we're looking for a solib, next search the
inferior's $LD_LIBRARY_PATH environment variable. */
if (is_solib && found_file < 0 && sysroot == NULL)
found_file = openp (get_in_environ (current_inferior ()->environment,
"LD_LIBRARY_PATH"),
OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, in_pathname,
O_RDONLY | O_BINARY, &temp_pathname);
if (fd == NULL)
{
if (found_file >= 0)
close (found_file);
}
else
*fd = found_file;
return temp_pathname;
}
/* Return the full pathname of the main executable, or NULL if not
found. The returned pathname is malloc'ed and must be freed by
the caller. If FD is non-NULL, *FD is set to either -1 or an open
file handle for the main executable.
The search algorithm used is described in solib_find_1's comment
above. */
char *
exec_file_find (char *in_pathname, int *fd)
{
char *result = solib_find_1 (in_pathname, fd, 0);
if (result == NULL)
{
const char *fskind = effective_target_file_system_kind ();
if (fskind == file_system_kind_dos_based)
{
char *new_pathname;
new_pathname = alloca (strlen (in_pathname) + 5);
strcpy (new_pathname, in_pathname);
strcat (new_pathname, ".exe");
result = solib_find_1 (new_pathname, fd, 0);
}
}
return result;
}
/* Return the full pathname of a shared library file, or NULL if not
found. The returned pathname is malloc'ed and must be freed by
the caller. If FD is non-NULL, *FD is set to either -1 or an open
file handle for the shared library.
The search algorithm used is described in solib_find_1's comment
above. */
char *
solib_find (char *in_pathname, int *fd)
{
const char *solib_symbols_extension
= gdbarch_solib_symbols_extension (target_gdbarch ());
/* If solib_symbols_extension is set, replace the file's
extension. */
if (solib_symbols_extension != NULL)
{
char *p = in_pathname + strlen (in_pathname);
while (p > in_pathname && *p != '.')
p--;
if (*p == '.')
{
char *new_pathname;
new_pathname = alloca (p - in_pathname + 1
+ strlen (solib_symbols_extension) + 1);
memcpy (new_pathname, in_pathname, p - in_pathname + 1);
strcpy (new_pathname + (p - in_pathname) + 1,
solib_symbols_extension);
in_pathname = new_pathname;
}
}
return solib_find_1 (in_pathname, fd, 1);
}
/* Open and return a BFD for the shared library PATHNAME. If FD is not -1,
it is used as file handle to open the file. Throws an error if the file
could not be opened. Handles both local and remote file access.
PATHNAME must be malloc'ed by the caller. It will be freed by this
function. If unsuccessful, the FD will be closed (unless FD was
-1). */
bfd *
solib_bfd_fopen (char *pathname, int fd)
{
bfd *abfd = gdb_bfd_open (pathname, gnutarget, fd);
if (abfd != NULL && !gdb_bfd_has_target_filename (abfd))
bfd_set_cacheable (abfd, 1);
if (!abfd)
{
make_cleanup (xfree, pathname);
error (_("Could not open `%s' as an executable file: %s"),
pathname, bfd_errmsg (bfd_get_error ()));
}
xfree (pathname);
return abfd;
}
/* Find shared library PATHNAME and open a BFD for it. */
bfd *
solib_bfd_open (char *pathname)
{
char *found_pathname;
int found_file;
bfd *abfd;
const struct bfd_arch_info *b;
/* Search for shared library file. */
found_pathname = solib_find (pathname, &found_file);
if (found_pathname == NULL)
{
/* Return failure if the file could not be found, so that we can
accumulate messages about missing libraries. */
if (errno == ENOENT)
return NULL;
perror_with_name (pathname);
}
/* Open bfd for shared library. */
abfd = solib_bfd_fopen (found_pathname, found_file);
/* Check bfd format. */
if (!bfd_check_format (abfd, bfd_object))
{
make_cleanup_bfd_unref (abfd);
error (_("`%s': not in executable format: %s"),
bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
}
/* Check bfd arch. */
b = gdbarch_bfd_arch_info (target_gdbarch ());
if (!b->compatible (b, bfd_get_arch_info (abfd)))
warning (_("`%s': Shared library architecture %s is not compatible "
"with target architecture %s."), bfd_get_filename (abfd),
bfd_get_arch_info (abfd)->printable_name, b->printable_name);
return abfd;
}
/* Given a pointer to one of the shared objects in our list of mapped
objects, use the recorded name to open a bfd descriptor for the
object, build a section table, relocate all the section addresses
by the base address at which the shared object was mapped, and then
add the sections to the target's section table.
FIXME: In most (all?) cases the shared object file name recorded in
the dynamic linkage tables will be a fully qualified pathname. For
cases where it isn't, do we really mimic the systems search
mechanism correctly in the below code (particularly the tilde
expansion stuff?). */
static int
solib_map_sections (struct so_list *so)
{
const struct target_so_ops *ops = solib_ops (target_gdbarch ());
char *filename;
struct target_section *p;
struct cleanup *old_chain;
bfd *abfd;
filename = tilde_expand (so->so_name);
old_chain = make_cleanup (xfree, filename);
abfd = ops->bfd_open (filename);
do_cleanups (old_chain);
if (abfd == NULL)
return 0;
/* Leave bfd open, core_xfer_memory and "info files" need it. */
so->abfd = abfd;
/* Copy the full path name into so_name, allowing symbol_file_add
to find it later. This also affects the =library-loaded GDB/MI
event, and in particular the part of that notification providing
the library's host-side path. If we let the target dictate
that objfile's path, and the target is different from the host,
GDB/MI will not provide the correct host-side path. */
if (strlen (bfd_get_filename (abfd)) >= SO_NAME_MAX_PATH_SIZE)
error (_("Shared library file name is too long."));
strcpy (so->so_name, bfd_get_filename (abfd));
if (build_section_table (abfd, &so->sections, &so->sections_end))
{
error (_("Can't find the file sections in `%s': %s"),
bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
}
for (p = so->sections; p < so->sections_end; p++)
{
/* Relocate the section binding addresses as recorded in the shared
object's file by the base address to which the object was actually
mapped. */
ops->relocate_section_addresses (so, p);
/* If the target didn't provide information about the address
range of the shared object, assume we want the location of
the .text section. */
if (so->addr_low == 0 && so->addr_high == 0
&& strcmp (p->the_bfd_section->name, ".text") == 0)
{
so->addr_low = p->addr;
so->addr_high = p->endaddr;
}
}
/* Add the shared object's sections to the current set of file
section tables. Do this immediately after mapping the object so
that later nodes in the list can query this object, as is needed
in solib-osf.c. */
add_target_sections (so, so->sections, so->sections_end);
return 1;
}
/* Free symbol-file related contents of SO and reset for possible reloading
of SO. If we have opened a BFD for SO, close it. If we have placed SO's
sections in some target's section table, the caller is responsible for
removing them.
This function doesn't mess with objfiles at all. If there is an
objfile associated with SO that needs to be removed, the caller is
responsible for taking care of that. */
static void
clear_so (struct so_list *so)
{
const struct target_so_ops *ops = solib_ops (target_gdbarch ());
if (so->sections)
{
xfree (so->sections);
so->sections = so->sections_end = NULL;
}
gdb_bfd_unref (so->abfd);
so->abfd = NULL;
/* Our caller closed the objfile, possibly via objfile_purge_solibs. */
so->symbols_loaded = 0;
so->objfile = NULL;
so->addr_low = so->addr_high = 0;
/* Restore the target-supplied file name. SO_NAME may be the path
of the symbol file. */
strcpy (so->so_name, so->so_original_name);
/* Do the same for target-specific data. */
if (ops->clear_so != NULL)
ops->clear_so (so);
}
/* Free the storage associated with the `struct so_list' object SO.
If we have opened a BFD for SO, close it.
The caller is responsible for removing SO from whatever list it is
a member of. If we have placed SO's sections in some target's
section table, the caller is responsible for removing them.
This function doesn't mess with objfiles at all. If there is an
objfile associated with SO that needs to be removed, the caller is
responsible for taking care of that. */
void
free_so (struct so_list *so)
{
const struct target_so_ops *ops = solib_ops (target_gdbarch ());
clear_so (so);
ops->free_so (so);
xfree (so);
}
/* Return address of first so_list entry in master shared object list. */
struct so_list *
master_so_list (void)
{
return so_list_head;
}
/* Read in symbols for shared object SO. If SYMFILE_VERBOSE is set in FLAGS,
be chatty about it. Return non-zero if any symbols were actually
loaded. */
int
solib_read_symbols (struct so_list *so, int flags)
{
if (so->symbols_loaded)
{
/* If needed, we've already warned in our caller. */
}
else if (so->abfd == NULL)
{
/* We've already warned about this library, when trying to open
it. */
}
else
{
flags |= current_inferior ()->symfile_flags;
TRY
{
struct section_addr_info *sap;
/* Have we already loaded this shared object? */
ALL_OBJFILES (so->objfile)
{
if (filename_cmp (objfile_name (so->objfile), so->so_name) == 0
&& so->objfile->addr_low == so->addr_low)
break;
}
if (so->objfile != NULL)
break;
sap = build_section_addr_info_from_section_table (so->sections,
so->sections_end);
so->objfile = symbol_file_add_from_bfd (so->abfd, so->so_name,
flags, sap, OBJF_SHARED,
NULL);
so->objfile->addr_low = so->addr_low;
free_section_addr_info (sap);
so->symbols_loaded = 1;
}
CATCH (e, RETURN_MASK_ERROR)
{
exception_fprintf (gdb_stderr, e, _("Error while reading shared"
" library symbols for %s:\n"),
so->so_name);
}
END_CATCH
return 1;
}
return 0;
}
/* Return 1 if KNOWN->objfile is used by any other so_list object in the
SO_LIST_HEAD list. Return 0 otherwise. */
static int
solib_used (const struct so_list *const known)
{
const struct so_list *pivot;
for (pivot = so_list_head; pivot != NULL; pivot = pivot->next)
if (pivot != known && pivot->objfile == known->objfile)
return 1;
return 0;
}
/* Synchronize GDB's shared object list with inferior's.
Extract the list of currently loaded shared objects from the
inferior, and compare it with the list of shared objects currently
in GDB's so_list_head list. Edit so_list_head to bring it in sync
with the inferior's new list.
If we notice that the inferior has unloaded some shared objects,
free any symbolic info GDB had read about those shared objects.
Don't load symbolic info for any new shared objects; just add them
to the list, and leave their symbols_loaded flag clear.
If FROM_TTY is non-null, feel free to print messages about what
we're doing.
If TARGET is non-null, add the sections of all new shared objects
to TARGET's section table. Note that this doesn't remove any
sections for shared objects that have been unloaded, and it
doesn't check to see if the new shared objects are already present in
the section table. But we only use this for core files and
processes we've just attached to, so that's okay. */
static void
update_solib_list (int from_tty, struct target_ops *target)
{
const struct target_so_ops *ops = solib_ops (target_gdbarch ());
struct so_list *inferior = ops->current_sos();
struct so_list *gdb, **gdb_link;
/* We can reach here due to changing solib-search-path or the
sysroot, before having any inferior. */
if (target_has_execution && !ptid_equal (inferior_ptid, null_ptid))
{
struct inferior *inf = current_inferior ();
/* If we are attaching to a running process for which we
have not opened a symbol file, we may be able to get its
symbols now! */
if (inf->attach_flag && symfile_objfile == NULL)
catch_errors (ops->open_symbol_file_object, &from_tty,
"Error reading attached process's symbol file.\n",
RETURN_MASK_ALL);
}
/* GDB and the inferior's dynamic linker each maintain their own
list of currently loaded shared objects; we want to bring the
former in sync with the latter. Scan both lists, seeing which
shared objects appear where. There are three cases:
- A shared object appears on both lists. This means that GDB
knows about it already, and it's still loaded in the inferior.
Nothing needs to happen.
- A shared object appears only on GDB's list. This means that
the inferior has unloaded it. We should remove the shared
object from GDB's tables.
- A shared object appears only on the inferior's list. This
means that it's just been loaded. We should add it to GDB's
tables.
So we walk GDB's list, checking each entry to see if it appears
in the inferior's list too. If it does, no action is needed, and
we remove it from the inferior's list. If it doesn't, the
inferior has unloaded it, and we remove it from GDB's list. By
the time we're done walking GDB's list, the inferior's list
contains only the new shared objects, which we then add. */
gdb = so_list_head;
gdb_link = &so_list_head;
while (gdb)
{
struct so_list *i = inferior;
struct so_list **i_link = &inferior;
/* Check to see whether the shared object *gdb also appears in
the inferior's current list. */
while (i)
{
if (ops->same)
{
if (ops->same (gdb, i))
break;
}
else
{
if (! filename_cmp (gdb->so_original_name, i->so_original_name))
break;
}
i_link = &i->next;
i = *i_link;
}
/* If the shared object appears on the inferior's list too, then
it's still loaded, so we don't need to do anything. Delete
it from the inferior's list, and leave it on GDB's list. */
if (i)
{
*i_link = i->next;
free_so (i);
gdb_link = &gdb->next;
gdb = *gdb_link;
}
/* If it's not on the inferior's list, remove it from GDB's tables. */
else
{
/* Notify any observer that the shared object has been
unloaded before we remove it from GDB's tables. */
observer_notify_solib_unloaded (gdb);
VEC_safe_push (char_ptr, current_program_space->deleted_solibs,
xstrdup (gdb->so_name));
*gdb_link = gdb->next;
/* Unless the user loaded it explicitly, free SO's objfile. */
if (gdb->objfile && ! (gdb->objfile->flags & OBJF_USERLOADED)
&& !solib_used (gdb))
free_objfile (gdb->objfile);
/* Some targets' section tables might be referring to
sections from so->abfd; remove them. */
remove_target_sections (gdb);
free_so (gdb);
gdb = *gdb_link;
}
}
/* Now the inferior's list contains only shared objects that don't
appear in GDB's list --- those that are newly loaded. Add them
to GDB's shared object list. */
if (inferior)
{
int not_found = 0;
const char *not_found_filename = NULL;
struct so_list *i;
/* Add the new shared objects to GDB's list. */
*gdb_link = inferior;
/* Fill in the rest of each of the `struct so_list' nodes. */
for (i = inferior; i; i = i->next)
{
i->pspace = current_program_space;
VEC_safe_push (so_list_ptr, current_program_space->added_solibs, i);
TRY
{
/* Fill in the rest of the `struct so_list' node. */
if (!solib_map_sections (i))
{
not_found++;
if (not_found_filename == NULL)
not_found_filename = i->so_original_name;
}
}
CATCH (e, RETURN_MASK_ERROR)
{
exception_fprintf (gdb_stderr, e,
_("Error while mapping shared "
"library sections:\n"));
}
END_CATCH
/* Notify any observer that the shared object has been
loaded now that we've added it to GDB's tables. */
observer_notify_solib_loaded (i);
}
/* If a library was not found, issue an appropriate warning
message. We have to use a single call to warning in case the
front end does something special with warnings, e.g., pop up
a dialog box. It Would Be Nice if we could get a "warning: "
prefix on each line in the CLI front end, though - it doesn't
stand out well. */
if (not_found == 1)
warning (_("Could not load shared library symbols for %s.\n"
"Do you need \"set solib-search-path\" "
"or \"set sysroot\"?"),
not_found_filename);
else if (not_found > 1)
warning (_("\
Could not load shared library symbols for %d libraries, e.g. %s.\n\
Use the \"info sharedlibrary\" command to see the complete listing.\n\
Do you need \"set solib-search-path\" or \"set sysroot\"?"),
not_found, not_found_filename);
}
}
/* Return non-zero if NAME is the libpthread shared library.
Uses a fairly simplistic heuristic approach where we check
the file name against "/libpthread". This can lead to false
positives, but this should be good enough in practice. */
int
libpthread_name_p (const char *name)
{
return (strstr (name, "/libpthread") != NULL);
}
/* Return non-zero if SO is the libpthread shared library. */
static int
libpthread_solib_p (struct so_list *so)
{
return libpthread_name_p (so->so_name);
}
/* Read in symbolic information for any shared objects whose names
match PATTERN. (If we've already read a shared object's symbol
info, leave it alone.) If PATTERN is zero, read them all.
If READSYMS is 0, defer reading symbolic information until later
but still do any needed low level processing.
FROM_TTY and TARGET are as described for update_solib_list, above. */
void
solib_add (const char *pattern, int from_tty,
struct target_ops *target, int readsyms)
{
struct so_list *gdb;
if (print_symbol_loading_p (from_tty, 0, 0))
{
if (pattern != NULL)
{
printf_unfiltered (_("Loading symbols for shared libraries: %s\n"),
pattern);
}
else
printf_unfiltered (_("Loading symbols for shared libraries.\n"));
}
current_program_space->solib_add_generation++;
if (pattern)
{
char *re_err = re_comp (pattern);
if (re_err)
error (_("Invalid regexp: %s"), re_err);
}
update_solib_list (from_tty, target);
/* Walk the list of currently loaded shared libraries, and read
symbols for any that match the pattern --- or any whose symbols
aren't already loaded, if no pattern was given. */
{
int any_matches = 0;
int loaded_any_symbols = 0;
const int flags =
SYMFILE_DEFER_BP_RESET | (from_tty ? SYMFILE_VERBOSE : 0);