-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
lr_finder.py
119 lines (90 loc) · 3.55 KB
/
lr_finder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import argparse
import glob
import os
import cv2
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
import numpy as np
from torchvision import transforms
from conf import settings
from utils import *
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from torch.optim.lr_scheduler import _LRScheduler
class FindLR(_LRScheduler):
"""exponentially increasing learning rate
Args:
optimizer: optimzier(e.g. SGD)
num_iter: totoal_iters
max_lr: maximum learning rate
"""
def __init__(self, optimizer, max_lr=10, num_iter=100, last_epoch=-1):
self.total_iters = num_iter
self.max_lr = max_lr
super().__init__(optimizer, last_epoch)
def get_lr(self):
return [base_lr * (self.max_lr / base_lr) ** (self.last_epoch / (self.total_iters + 1e-32)) for base_lr in self.base_lrs]
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-net', type=str, required=True, help='net type')
parser.add_argument('-b', type=int, default=64, help='batch size for dataloader')
parser.add_argument('-base_lr', type=float, default=1e-7, help='min learning rate')
parser.add_argument('-max_lr', type=float, default=10, help='max learning rate')
parser.add_argument('-num_iter', type=int, default=100, help='num of iteration')
parser.add_argument('-gpu', type=bool, default=True, help='use gpu or not')
parser.add_argument('-gpus', nargs='+', type=int, default=0, help='gpu device')
args = parser.parse_args()
cifar100_training_loader = get_training_dataloader(
settings.CIFAR100_TRAIN_MEAN,
settings.CIFAR100_TRAIN_STD,
num_workers=4,
batch_size=args.b,
)
net = get_network(args)
loss_function = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=args.base_lr, momentum=0.9, weight_decay=1e-4, nesterov=True)
#set up warmup phase learning rate scheduler
lr_scheduler = FindLR(optimizer, max_lr=args.max_lr, num_iter=args.num_iter)
epoches = int(args.num_iter / len(cifar100_training_loader)) + 1
n = 0
learning_rate = []
losses = []
for epoch in range(epoches):
#training procedure
net.train()
for batch_index, (images, labels) in enumerate(cifar100_training_loader):
if n > args.num_iter:
break
lr_scheduler.step()
images = images.cuda()
labels = labels.cuda()
optimizer.zero_grad()
predicts = net(images)
loss = loss_function(predicts, labels)
if torch.isnan(loss).any():
n += 1e8
break
loss.backward()
optimizer.step()
print('Iterations: {iter_num} [{trained_samples}/{total_samples}]\tLoss: {:0.4f}\tLR: {:0.8f}'.format(
loss.item(),
optimizer.param_groups[0]['lr'],
iter_num=n,
trained_samples=batch_index * args.b + len(images),
total_samples=len(cifar100_training_loader.dataset),
))
learning_rate.append(optimizer.param_groups[0]['lr'])
losses.append(loss.item())
n += 1
learning_rate = learning_rate[10:-5]
losses = losses[10:-5]
fig, ax = plt.subplots(1,1)
ax.plot(learning_rate, losses)
ax.set_xlabel('learning rate')
ax.set_ylabel('losses')
ax.set_xscale('log')
ax.xaxis.set_major_formatter(plt.FormatStrFormatter('%.0e'))
fig.savefig('result.jpg')