-
Notifications
You must be signed in to change notification settings - Fork 5
/
DESCRIPTION
61 lines (61 loc) · 2.11 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
Package: LDATS
Title: Latent Dirichlet Allocation Coupled with Time Series Analyses
Version: 0.2.7
Authors@R: c(
person(c("Juniper", "L."), "Simonis",
email = "[email protected]", role = c("aut", "cre"),
comment = c(ORCID = "0000-0001-9798-0460")),
person(c("Erica", "M."), "Christensen",
role = c("aut"), comment = c(ORCID = "0000-0002-5635-2502")),
person(c("David", "J."), "Harris", role = c("aut"),
comment = c(ORCID = "0000-0003-3332-9307")),
person(c("Renata", "M."), "Diaz", role = c("aut"),
comment = c(ORCID = "0000-0003-0803-4734")),
person("Hao", "Ye", role = c("aut"),
comment = c(ORCID = "0000-0002-8630-1458")),
person(c("Ethan", "P."), "White", role = c("aut"),
comment = c(ORCID = "0000-0001-6728-7745")),
person(c("S.K.", "Morgan"), "Ernest", role = c("aut"),
comment = c(ORCID = "0000-0002-6026-8530")),
person(c("Weecology"), role = "cph"))
Description: Combines Latent Dirichlet Allocation (LDA) and Bayesian multinomial
time series methods in a two-stage analysis to quantify dynamics in
high-dimensional temporal data. LDA decomposes multivariate data into
lower-dimension latent groupings, whose relative proportions are modeled
using generalized Bayesian time series models that include abrupt
changepoints and smooth dynamics. The methods are described in Blei
et al. (2003) <doi:10.1162/jmlr.2003.3.4-5.993>, Western and Kleykamp
(2004) <doi:10.1093/pan/mph023>, Venables and Ripley
(2002, ISBN-13:978-0387954578), and Christensen et al.
(2018) <doi:10.1002/ecy.2373>.
URL: https://weecology.github.io/LDATS, https://github.com/weecology/LDATS
BugReports: https://github.com/weecology/LDATS/issues
Depends: R (>= 3.2.3)
License: MIT + file LICENSE
Encoding: UTF-8
LazyData: true
Imports:
coda,
digest,
extraDistr,
graphics,
grDevices,
lubridate,
magrittr,
memoise,
methods,
mvtnorm,
nnet,
progress,
stats,
topicmodels,
viridis
Suggests:
knitr,
pkgdown,
rmarkdown,
testthat,
vdiffr
VignetteBuilder:
knitr
RoxygenNote: 6.1.1