-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathasd_td_train_test_mean.py
208 lines (167 loc) · 6.64 KB
/
asd_td_train_test_mean.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import os
import torch
import numpy as np
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
# Use CUDA if available, otherwise error
assert torch.cuda.is_available()
device = torch.device(f"cuda:0" if torch.cuda.is_available() else "cpu")
from data.merged_instance_generator_bs import ASDTDTaskGenerator
import random
import numpy as np
import torch
from utilFiles.the_args import get_seed
from utilFiles.set_deterministic import make_deterministic
args, _ = get_seed()
make_deterministic(seed=args.seed)
#Data Loaders
bs = 8
train_dl = DataLoader(ASDTDTaskGenerator("train", data_path="dataset", args = args),batch_size=bs,shuffle=True)
# val_dl = DataLoader(ASDTDTaskGenerator("val", seed = args.seed),batch_size=1,shuffle=True)
test_dl = DataLoader(ASDTDTaskGenerator("test", data_path="dataset", args = args),batch_size=1,shuffle=True)
if args.weighted:
if args.is_lstm:
from models.ASDvsTDModel_wmean import ASD_TD_CNP_LSTM as model
print("LSTM model")
else:
from models.ASDvsTDModel_wmean import ASD_TD_CNP as model
else:
if args.is_lstm:
from models.ASDvsTDModel_mean import ASD_TD_CNP_LSTM as model
print("LSTM model")
else:
from models.ASDvsTDModel_mean import ASD_TD_CNP as model
model = model(is_gaze=args.is_gaze, is_touch=args.is_touch).to(device)
criterion = nn.BCEWithLogitsLoss().to(device)
optimizer = optim.Adam(model.parameters(), lr=0.0001, weight_decay=1e-5)
print(model)
import csv
def save_to_csv(all_dicts,iter=0):
header, values = [], []
for d in all_dicts:
for k, v in d.items():
header.append(k)
values.append(v)
save_model_name = f"Save_{args.identifier}_Batch8_sd{args.seed}_t_{args.is_touch}_g_{args.is_gaze}_lstm_{args.is_lstm}.csv"
# save_model_name = "Debug.csv"
if iter == 0:
with open(save_model_name, 'a') as f:
writer_obj = csv.writer(f)
writer_obj.writerow(header)
with open(save_model_name, 'a') as f:
writer_obj = csv.writer(f)
writer_obj.writerow(values)
def test(identifier):
if identifier == "test":
the_dataloader = test_dl
elif identifier == "val":
print("NO validation now")
raise NotImplementedError
# the_dataloader = val_dl
with torch.no_grad():
model.eval()
accuracy, count,loss = 0, 0, 0.0
accuracy_1 = 0
acc_asd, count_asd, acc_td, count_td = 0,0,0,0
for d in the_dataloader:
model.eval()
model.zero_grad()
optimizer.zero_grad()
touch_data, gaze_data, label = d
label = label.to(device)
touch_data = touch_data.to(device).float()
gaze_data = gaze_data.to(device).float()
# add_data = add_data.to(device).float()
pred = model(touch_data, gaze_data, add_data=0)
# print("label: ", label)
# print("prediction: ", pred)
loss += criterion(pred, label.float())
pred = 1*(torch.sigmoid(pred)>0.5)
# print("pred: ", pred)
# print("label: ", label)
count += 1
accuracy += 1.0*(label.squeeze() == pred.squeeze())
accuracy_1 +=1.0*(label.squeeze() == 1.0)
acc_asd += 1.0 * (label.squeeze() == 1.0) *(pred.squeeze()==1.0)
acc_td += 1.0 * (label.squeeze() == 0.0) *(pred.squeeze()==0.0)
count_asd += 1.0 * (label.squeeze() == 1.0)
count_td += 1.0 * (label.squeeze() == 0.0)
av_acc = accuracy/count
av_acc = av_acc.detach().cpu().numpy().item()
av_loss = loss/count
av_loss = av_loss.detach().cpu().numpy().item()
av_acc_asd = acc_asd/count_asd
av_acc_td = acc_td/count_td
av_acc_asd = av_acc_asd.detach().cpu().numpy().item()
av_acc_td = av_acc_td.detach().cpu().numpy().item()
av_acc_both = (av_acc_td+av_acc_asd)/2
print("{} acc: ".format(identifier), accuracy/count, "count: ", count, "all: ", accuracy_1/count, 'loss: ', av_loss)
the_dict = {
identifier + " loss":av_loss,
identifier + " ASD acc": av_acc_asd,
identifier + " TD acc": av_acc_td,
identifier + " AVG acc": av_acc_both,
identifier + " acc": av_acc,
}
print('the_dict: ', the_dict)
return the_dict
def one_iteration_training(touch_data, gaze_data, label):
model.zero_grad()
optimizer.zero_grad()
model.train()
# print('touch: ', touch_data.shape)
if touch_data.shape[1] <=5 or gaze_data.shape[1] <= 5:
print("Not enough data")
raise NotImplementedError
pred = model(touch_data,gaze_data, add_data=0)
# print("pred: ", pred)
# print("label: ", label)
loss = criterion(pred,label.float())
# print("loss: ", loss)
loss.backward()
optimizer.step()
pred = 1 * (torch.sigmoid(pred) > 0.5)
# print("pred: ", pred)
# print("label: ", label)
accuracy = torch.mean(1.0 * (label.squeeze() == pred.squeeze()))
return loss.detach().cpu().numpy(), accuracy
def main():
for tr_it in range(1000):
test_dict = test("test")
# val_dict = test("val")
loss_tr, count = 0.0, 0
accuracy = 0.0
overall_count, fail_count = 0, 0
for d in train_dl:
overall_count += 1
touch_data, gaze_data, label = d
label = label.to(device)
touch_data = touch_data.to(device).float()
gaze_data = gaze_data.to(device).float()
# add_data = add_data.to(device).float()
if touch_data.shape[1] <= 5 or gaze_data.shape[1] <= 5:
# print("Not enough data")
fail_count += 1
continue
count += 1
model.zero_grad()
optimizer.zero_grad()
model.train()
loss, acc = one_iteration_training(touch_data, gaze_data, label)
loss_tr += loss
accuracy += acc
print("Fail count, overall count", fail_count, overall_count)
print("Tr Loss at it: ", tr_it, " loss: ", loss_tr / count, "accuracy: ", accuracy / count)
tr_loss = loss_tr / count
tr_loss = tr_loss.item()
tr_acc = accuracy / count
tr_acc = tr_acc.detach().cpu().numpy().item()
train_dict = {
'Train acc': tr_acc,
'Train loss':tr_loss
}
all_dicts_list = [train_dict,test_dict]
save_to_csv(all_dicts_list,tr_it)
if __name__ == "__main__":
main()