@@ -572,8 +572,8 @@ def __call__(self, X, Y=None, eval_gradient=False):
572
572
is evaluated instead.
573
573
574
574
eval_gradient : bool, default=False
575
- Determines whether the gradient with respect to the kernel
576
- hyperparameter is determined .
575
+ Determines whether the gradient with respect to the log of the
576
+ kernel hyperparameter is computed .
577
577
578
578
Returns
579
579
-------
@@ -582,7 +582,7 @@ def __call__(self, X, Y=None, eval_gradient=False):
582
582
583
583
K_gradient : ndarray of shape \
584
584
(n_samples_X, n_samples_X, n_dims, n_kernels), optional
585
- The gradient of the kernel k(X, X) with respect to the
585
+ The gradient of the kernel k(X, X) with respect to the log of the
586
586
hyperparameter of the kernel. Only returned when `eval_gradient`
587
587
is True.
588
588
"""
@@ -796,8 +796,8 @@ def __call__(self, X, Y=None, eval_gradient=False):
796
796
is evaluated instead.
797
797
798
798
eval_gradient : bool, default=False
799
- Determines whether the gradient with respect to the kernel
800
- hyperparameter is determined .
799
+ Determines whether the gradient with respect to the log of
800
+ the kernel hyperparameter is computed .
801
801
802
802
Returns
803
803
-------
@@ -806,7 +806,7 @@ def __call__(self, X, Y=None, eval_gradient=False):
806
806
807
807
K_gradient : ndarray of shape (n_samples_X, n_samples_X, n_dims),\
808
808
optional
809
- The gradient of the kernel k(X, X) with respect to the
809
+ The gradient of the kernel k(X, X) with respect to the log of the
810
810
hyperparameter of the kernel. Only returned when `eval_gradient`
811
811
is True.
812
812
"""
@@ -894,8 +894,8 @@ def __call__(self, X, Y=None, eval_gradient=False):
894
894
is evaluated instead.
895
895
896
896
eval_gradient : bool, default=False
897
- Determines whether the gradient with respect to the kernel
898
- hyperparameter is determined .
897
+ Determines whether the gradient with respect to the log of
898
+ the kernel hyperparameter is computed .
899
899
900
900
Returns
901
901
-------
@@ -904,7 +904,7 @@ def __call__(self, X, Y=None, eval_gradient=False):
904
904
905
905
K_gradient : ndarray of shape (n_samples_X, n_samples_X, n_dims), \
906
906
optional
907
- The gradient of the kernel k(X, X) with respect to the
907
+ The gradient of the kernel k(X, X) with respect to the log of the
908
908
hyperparameter of the kernel. Only returned when `eval_gradient`
909
909
is True.
910
910
"""
@@ -1072,8 +1072,8 @@ def __call__(self, X, Y=None, eval_gradient=False):
1072
1072
is evaluated instead.
1073
1073
1074
1074
eval_gradient : bool, default=False
1075
- Determines whether the gradient with respect to the kernel
1076
- hyperparameter is determined .
1075
+ Determines whether the gradient with respect to the log of
1076
+ the kernel hyperparameter is computed .
1077
1077
1078
1078
Returns
1079
1079
-------
@@ -1082,7 +1082,7 @@ def __call__(self, X, Y=None, eval_gradient=False):
1082
1082
1083
1083
K_gradient : ndarray of shape (n_samples_X, n_samples_X, n_dims),\
1084
1084
optional
1085
- The gradient of the kernel k(X, X) with respect to the
1085
+ The gradient of the kernel k(X, X) with respect to the log of the
1086
1086
hyperparameter of the kernel. Only returned when `eval_gradient`
1087
1087
is True.
1088
1088
"""
@@ -1200,8 +1200,9 @@ def __call__(self, X, Y=None, eval_gradient=False):
1200
1200
is evaluated instead.
1201
1201
1202
1202
eval_gradient : bool, default=False
1203
- Determines whether the gradient with respect to the kernel
1204
- hyperparameter is determined. Only supported when Y is None.
1203
+ Determines whether the gradient with respect to the log of
1204
+ the kernel hyperparameter is computed.
1205
+ Only supported when Y is None.
1205
1206
1206
1207
Returns
1207
1208
-------
@@ -1210,7 +1211,7 @@ def __call__(self, X, Y=None, eval_gradient=False):
1210
1211
1211
1212
K_gradient : ndarray of shape (n_samples_X, n_samples_X, n_dims), \
1212
1213
optional
1213
- The gradient of the kernel k(X, X) with respect to the
1214
+ The gradient of the kernel k(X, X) with respect to the log of the
1214
1215
hyperparameter of the kernel. Only returned when eval_gradient
1215
1216
is True.
1216
1217
"""
@@ -1319,8 +1320,9 @@ def __call__(self, X, Y=None, eval_gradient=False):
1319
1320
is evaluated instead.
1320
1321
1321
1322
eval_gradient : bool, default=False
1322
- Determines whether the gradient with respect to the kernel
1323
- hyperparameter is determined. Only supported when Y is None.
1323
+ Determines whether the gradient with respect to the log of
1324
+ the kernel hyperparameter is computed.
1325
+ Only supported when Y is None.
1324
1326
1325
1327
Returns
1326
1328
-------
@@ -1329,7 +1331,7 @@ def __call__(self, X, Y=None, eval_gradient=False):
1329
1331
1330
1332
K_gradient : ndarray of shape (n_samples_X, n_samples_X, n_dims),\
1331
1333
optional
1332
- The gradient of the kernel k(X, X) with respect to the
1334
+ The gradient of the kernel k(X, X) with respect to the log of the
1333
1335
hyperparameter of the kernel. Only returned when eval_gradient
1334
1336
is True.
1335
1337
"""
@@ -1466,8 +1468,9 @@ def __call__(self, X, Y=None, eval_gradient=False):
1466
1468
if evaluated instead.
1467
1469
1468
1470
eval_gradient : bool, default=False
1469
- Determines whether the gradient with respect to the kernel
1470
- hyperparameter is determined. Only supported when Y is None.
1471
+ Determines whether the gradient with respect to the log of
1472
+ the kernel hyperparameter is computed.
1473
+ Only supported when Y is None.
1471
1474
1472
1475
Returns
1473
1476
-------
@@ -1476,7 +1479,7 @@ def __call__(self, X, Y=None, eval_gradient=False):
1476
1479
1477
1480
K_gradient : ndarray of shape (n_samples_X, n_samples_X, n_dims), \
1478
1481
optional
1479
- The gradient of the kernel k(X, X) with respect to the
1482
+ The gradient of the kernel k(X, X) with respect to the log of the
1480
1483
hyperparameter of the kernel. Only returned when `eval_gradient`
1481
1484
is True.
1482
1485
"""
@@ -1620,8 +1623,9 @@ def __call__(self, X, Y=None, eval_gradient=False):
1620
1623
if evaluated instead.
1621
1624
1622
1625
eval_gradient : bool, default=False
1623
- Determines whether the gradient with respect to the kernel
1624
- hyperparameter is determined. Only supported when Y is None.
1626
+ Determines whether the gradient with respect to the log of
1627
+ the kernel hyperparameter is computed.
1628
+ Only supported when Y is None.
1625
1629
1626
1630
Returns
1627
1631
-------
@@ -1630,7 +1634,7 @@ def __call__(self, X, Y=None, eval_gradient=False):
1630
1634
1631
1635
K_gradient : ndarray of shape (n_samples_X, n_samples_X, n_dims), \
1632
1636
optional
1633
- The gradient of the kernel k(X, X) with respect to the
1637
+ The gradient of the kernel k(X, X) with respect to the log of the
1634
1638
hyperparameter of the kernel. Only returned when `eval_gradient`
1635
1639
is True.
1636
1640
"""
@@ -1809,16 +1813,17 @@ def __call__(self, X, Y=None, eval_gradient=False):
1809
1813
if evaluated instead.
1810
1814
1811
1815
eval_gradient : bool, default=False
1812
- Determines whether the gradient with respect to the kernel
1813
- hyperparameter is determined. Only supported when Y is None.
1816
+ Determines whether the gradient with respect to the log of
1817
+ the kernel hyperparameter is computed.
1818
+ Only supported when Y is None.
1814
1819
1815
1820
Returns
1816
1821
-------
1817
1822
K : ndarray of shape (n_samples_X, n_samples_Y)
1818
1823
Kernel k(X, Y)
1819
1824
1820
1825
K_gradient : ndarray of shape (n_samples_X, n_samples_X, n_dims)
1821
- The gradient of the kernel k(X, X) with respect to the
1826
+ The gradient of the kernel k(X, X) with respect to the log of the
1822
1827
hyperparameter of the kernel. Only returned when eval_gradient
1823
1828
is True.
1824
1829
"""
@@ -1954,8 +1959,9 @@ def __call__(self, X, Y=None, eval_gradient=False):
1954
1959
if evaluated instead.
1955
1960
1956
1961
eval_gradient : bool, default=False
1957
- Determines whether the gradient with respect to the kernel
1958
- hyperparameter is determined. Only supported when Y is None.
1962
+ Determines whether the gradient with respect to the log of
1963
+ the kernel hyperparameter is computed.
1964
+ Only supported when Y is None.
1959
1965
1960
1966
Returns
1961
1967
-------
@@ -1964,7 +1970,7 @@ def __call__(self, X, Y=None, eval_gradient=False):
1964
1970
1965
1971
K_gradient : ndarray of shape (n_samples_X, n_samples_X, n_dims), \
1966
1972
optional
1967
- The gradient of the kernel k(X, X) with respect to the
1973
+ The gradient of the kernel k(X, X) with respect to the log of the
1968
1974
hyperparameter of the kernel. Only returned when `eval_gradient`
1969
1975
is True.
1970
1976
"""
@@ -2086,8 +2092,9 @@ def __call__(self, X, Y=None, eval_gradient=False):
2086
2092
if evaluated instead.
2087
2093
2088
2094
eval_gradient : bool, default=False
2089
- Determines whether the gradient with respect to the kernel
2090
- hyperparameter is determined. Only supported when Y is None.
2095
+ Determines whether the gradient with respect to the log of
2096
+ the kernel hyperparameter is computed.
2097
+ Only supported when Y is None.
2091
2098
2092
2099
Returns
2093
2100
-------
@@ -2096,7 +2103,7 @@ def __call__(self, X, Y=None, eval_gradient=False):
2096
2103
2097
2104
K_gradient : ndarray of shape (n_samples_X, n_samples_X, n_dims),\
2098
2105
optional
2099
- The gradient of the kernel k(X, X) with respect to the
2106
+ The gradient of the kernel k(X, X) with respect to the log of the
2100
2107
hyperparameter of the kernel. Only returned when `eval_gradient`
2101
2108
is True.
2102
2109
"""
@@ -2240,8 +2247,9 @@ def __call__(self, X, Y=None, eval_gradient=False):
2240
2247
if evaluated instead.
2241
2248
2242
2249
eval_gradient : bool, default=False
2243
- Determines whether the gradient with respect to the kernel
2244
- hyperparameter is determined. Only supported when Y is None.
2250
+ Determines whether the gradient with respect to the log of
2251
+ the kernel hyperparameter is computed.
2252
+ Only supported when Y is None.
2245
2253
2246
2254
Returns
2247
2255
-------
@@ -2250,7 +2258,7 @@ def __call__(self, X, Y=None, eval_gradient=False):
2250
2258
2251
2259
K_gradient : ndarray of shape (n_samples_X, n_samples_X, n_dims),\
2252
2260
optional
2253
- The gradient of the kernel k(X, X) with respect to the
2261
+ The gradient of the kernel k(X, X) with respect to the log of the
2254
2262
hyperparameter of the kernel. Only returned when `eval_gradient`
2255
2263
is True.
2256
2264
"""
0 commit comments