-
Notifications
You must be signed in to change notification settings - Fork 184
/
Copy pathaes.py
586 lines (558 loc) · 22.4 KB
/
aes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
#!/usr/bin/python
#
# AES - Advanced Encryption Standard
#
# Copyright (c) 2007 Josh Davis ( http://www.josh-davis.org ),
# Laurent Haan ( http://www.progressive-coding.com )
#
# Licensed under the MIT License ( http://www.opensource.org/licenses/mit-license.php ):
#
import math
class AES:
#
# START AES SECTION
#
#structure of valid key sizes
keySize = {
"SIZE_128":16,
"SIZE_192":24,
"SIZE_256":32}
#Rijndael S-box
sbox = [0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 ]
# Rijndael Inverted S-box
rsbox = [ 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb
, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb
, 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e
, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25
, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92
, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84
, 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06
, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b
, 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73
, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e
, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b
, 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4
, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f
, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef
, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61
, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d ]
# retrieves a given S-Box Value
def getSBoxValue(self,num): return self.sbox[num]
# retrieves a given Inverted S-Box Value
def getSBoxInvert(self,num): returnself. rsbox[num]
#
# Rijndael's key schedule rotate operation
# rotate the word eight bits to the left
#
# rotate(1d2c3a4f) = 2c3a4f1d
#
# word is an char array of size 4 (32 bit)
#
def rotate(self,word):
c = word[0]
for i in range(3): word[i] = word[i+1]
word[3] = c
return word
# Rijndael Rcon
Rcon = [0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8,
0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3,
0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f,
0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d,
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab,
0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d,
0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25,
0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01,
0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d,
0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa,
0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a,
0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02,
0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,
0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef,
0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94,
0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04,
0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f,
0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5,
0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33,
0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb ]
# gets a given Rcon value
def getRconValue(self,num): return self.Rcon[num]
# Key Schedule Core
def core(self,word, iteration):
# rotate the 32-bit word 8 bits to the left
word = self.rotate(word)
# apply S-Box substitution on all 4 parts of the 32-bit word
for i in range(4):
word[i] = self.getSBoxValue(word[i])
# XOR the output of the rcon operation with i to the first part (leftmost) only
word[0] = word[0]^self.getRconValue(iteration)
return word
#
# Rijndael's key expansion
# expands an 128,192,256 key into an 176,208,240 bytes key
#
# expandedKey is a pointer to an char array of large enough size
# key is a pointer to a non-expanded key
#
def expandKey(self,key, size, expandedKeySize):
# current expanded keySize, in bytes
currentSize = 0
rconIteration = 1
# temporary 4-byte variable
t = [0,0,0,0]
expandedKey = []
while len(expandedKey) < expandedKeySize:
expandedKey.append(0)
# set the 16,24,32 bytes of the expanded key to the input key
for j in range(size):
expandedKey[j] = key[j]
currentSize += size
while currentSize < expandedKeySize:
# assign the previous 4 bytes to the temporary value t
for k in range(4): t[k] = expandedKey[(currentSize - 4) + k]
#
# every 16,24,32 bytes we apply the core schedule to t
# and increment rconIteration afterwards
#
if currentSize % size == 0:
t = self.core(t, rconIteration)
rconIteration += 1;
# For 256-bit keys, we add an extra sbox to the calculation
if size == self.keySize["SIZE_256"] and ((currentSize % size) == 16):
for l in range(4): t[l] = self.getSBoxValue(t[l])
#
# We XOR t with the four-byte block 16,24,32 bytes before the new expanded key.
# This becomes the next four bytes in the expanded key.
#
for m in range(4):
expandedKey[currentSize] = expandedKey[currentSize - size] ^ t[m]
currentSize += 1
return expandedKey
# Adds (XORs) the round key to the state
def addRoundKey(self,state, roundKey):
for i in range(16):
state[i] ^= roundKey[i]
return state
# Creates a round key from the given expanded key and the
# position within the expanded key.
def createRoundKey(self,expandedKey,roundKeyPointer):
roundKey = [];
while len(roundKey) < 16:
roundKey.append(0)
for i in range(4):
for j in range(4):
roundKey[j*4+i] = expandedKey[roundKeyPointer + i*4 + j]
return roundKey
# galois multiplication of 8 bit characters a and b
def galois_multiplication(self,a, b):
p = 0
for counter in range(8):
if (b & 1) == 1: p ^= a
if p > 0x100: p ^= 0x100
# keep p 8 bit
hi_bit_set = (a & 0x80)
a <<= 1
if a > 0x100:
# keep a 8 bit
a ^= 0x100
if hi_bit_set == 0x80:
a ^= 0x1b
if a > 0x100:
# keep a 8 bit
a ^= 0x100
b >>= 1
if b > 0x100:
# keep b 8 bit
b ^= 0x100
return p
#
# substitute all the values from the state with the value in the SBox
# using the state value as index for the SBox
#
def subBytes(self,state,isInv):
for i in range(16):
if isInv: state[i] = self.getSBoxInvert(state[i])
else: state[i] = self.getSBoxValue(state[i])
return state
# iterate over the 4 rows and call shiftRow() with that row
def shiftRows(self,state,isInv):
for i in range(4):
state = self.shiftRow(state,i*4, i,isInv)
return state
# each iteration shifts the row to the left by 1
def shiftRow(self,state,statePointer,nbr,isInv):
for i in range(nbr):
if isInv:
tmp = state[statePointer + 3]
j = 3
while j > 0:
state[statePointer + j] = state[statePointer + j-1]
j -= 1;
state[statePointer] = tmp
else:
tmp = state[statePointer]
for j in range(3):
state[statePointer + j] = state[statePointer + j+1]
state[statePointer + 3] = tmp
return state
# galois multipication of the 4x4 matrix
def mixColumns(self,state,isInv):
column = [0,0,0,0]
# iterate over the 4 columns
for i in range(4):
# construct one column by iterating over the 4 rows
for j in range(4): column[j] = state[(j*4)+i]
# apply the mixColumn on one column
column = self.mixColumn(column,isInv)
# put the values back into the state
for k in range(4): state[(k*4)+i] = column[k]
return state;
# galois multipication of 1 column of the 4x4 matrix
def mixColumn(self,column,isInv):
mult = []
if isInv: mult = [14,9,13,11]
else: mult = [2,1,1,3]
cpy = [0,0,0,0]
for i in range(4): cpy[i] = column[i]
column[0] = self.galois_multiplication(cpy[0],mult[0]) ^ self.galois_multiplication(cpy[3],mult[1]) ^ self.galois_multiplication(cpy[2],mult[2]) ^ self.galois_multiplication(cpy[1],mult[3])
column[1] = self.galois_multiplication(cpy[1],mult[0]) ^ self.galois_multiplication(cpy[0],mult[1]) ^ self.galois_multiplication(cpy[3],mult[2]) ^ self.galois_multiplication(cpy[2],mult[3])
column[2] = self.galois_multiplication(cpy[2],mult[0]) ^ self.galois_multiplication(cpy[1],mult[1]) ^ self.galois_multiplication(cpy[0],mult[2]) ^ self.galois_multiplication(cpy[3],mult[3])
column[3] = self.galois_multiplication(cpy[3],mult[0]) ^ self.galois_multiplication(cpy[2],mult[1]) ^ self.galois_multiplication(cpy[1],mult[2]) ^ self.galois_multiplication(cpy[0],mult[3])
return column
# applies the 4 operations of the forward round in sequence
def aes_round(self,state, roundKey):
state = self.subBytes(state,False)
state = self.shiftRows(state,False)
state = self.mixColumns(state,False)
state = self.addRoundKey(state, roundKey)
return state
# applies the 4 operations of the inverse round in sequence
def aes_invRound(self,state, roundKey):
state = self.shiftRows(state,True)
state = self.subBytes(state,True)
state = self.addRoundKey(state, roundKey)
state = self.mixColumns(state,True)
return state
#
# Perform the initial operations, the standard round, and the final operations
# of the forward aes, creating a round key for each round
#
def aes_main(self,state, expandedKey, nbrRounds):
state = self.addRoundKey(state, self.createRoundKey(expandedKey,0))
i = 1
while i < nbrRounds:
state = self.aes_round(state, self.createRoundKey(expandedKey,16*i))
i += 1
state = self.subBytes(state,False)
state = self.shiftRows(state,False)
state = self.addRoundKey(state, self.createRoundKey(expandedKey,16*nbrRounds))
return state
#
# Perform the initial operations, the standard round, and the final operations
# of the inverse aes, creating a round key for each round
#
def aes_invMain(self,state, expandedKey, nbrRounds):
state = self.addRoundKey(state, self.createRoundKey(expandedKey,16*nbrRounds))
i = nbrRounds - 1
while i > 0:
state = self.aes_invRound(state, self.createRoundKey(expandedKey,16*i))
i -= 0
state = self.shiftRows(state,True)
state = self.subBytes(state,True)
state = self.addRoundKey(state, self.createRoundKey(expandedKey,0))
return state
# encrypts a 128 bit input block against the given key of size specified
def encrypt(self,iput, key, size):
output = []
while len(output) < 16:
output.append(0)
# the number of rounds
nbrRounds = 0
# the 128 bit block to encode
block = []
# set the number of rounds
if size == self.keySize["SIZE_128"]: nbrRounds = 10
elif size == self.keySize["SIZE_192"]: nbrRounds = 12
elif size == self.keySize["SIZE_256"]: nbrRounds = 14
else: return None
# the expanded keySize
expandedKeySize = (16*(nbrRounds+1))
#
# Set the block values, for the block:
# a0,0 a0,1 a0,2 a0,3
# a1,0 a1,1 a1,2 a1,3
# a2,0 a2,1 a2,2 a2,3
# a3,0 a3,1 a3,2 a3,3
# the mapping order is a0,0 a1,0 a2,0 a3,0 a0,1 a1,1 ... a2,3 a3,3
#
while len(block) < 16:
block.append(0)
# iterate over the columns
for i in range(4):
# iterate over the rows
for j in range(4):
block[(i+(j*4))] = iput[(i*4)+j]
# expand the key into an 176, 208, 240 bytes key
# the expanded key
expandedKey = self.expandKey(key, size, expandedKeySize)
# encrypt the block using the expandedKey
block = self.aes_main(block, expandedKey, nbrRounds)
# unmap the block again into the output
for k in range(4):
# iterate over the rows
for l in range(4):
output[(k*4)+l] = block[(k+(l*4))]
return output
# decrypts a 128 bit input block against the given key of size specified
def decrypt(self,iput, key, size):
output = []
while len(output) < 16:
output.append(0)
# the number of rounds
nbrRounds = 0
# the 128 bit block to decode
block = []
# set the number of rounds
if size == self.keySize["SIZE_128"]: nbrRounds = 10
elif size == self.keySize["SIZE_192"]: nbrRounds = 12
elif size == self.keySize["SIZE_256"]: nbrRounds = 14
else: return None
# the expanded keySize
expandedKeySize = (16*(nbrRounds+1))
#
# Set the block values, for the block:
# a0,0 a0,1 a0,2 a0,3
# a1,0 a1,1 a1,2 a1,3
# a2,0 a2,1 a2,2 a2,3
# a3,0 a3,1 a3,2 a3,3
# the mapping order is a0,0 a1,0 a2,0 a3,0 a0,1 a1,1 ... a2,3 a3,3
#
# iterate over the columns
for i in range(4):
# iterate over the rows
for j in range(4):
block[(i+(j*4))] = iput[(i*4)+j]
# expand the key into an 176, 208, 240 bytes key
expandedKey = self.expandKey(key, size, expandedKeySize)
# decrypt the block using the expandedKey
block = self.aes_invMain(block, expandedKey, nbrRounds)
# unmap the block again into the output
for k in range(4):
# iterate over the rows
for l in range(4):
output[(k*4)+l] = block[(k+(l*4))]
return output
#
# END AES SECTION
#
class AESModeOfOperation:
#
# START MODE OF OPERATION SECTION
#
aes = AES()
# structure of supported modes of operation
modeOfOperation = {
"OFB":0,
"CFB":1,
"CBC":2}
# converts a 16 character string into a number array
def convertString(self,string,start,end,mode):
if end - start > 16: end = start + 16
if mode == self.modeOfOperation["CBC"]: ar = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
else: ar = []
i = start
j = 0
while len(ar) < end - start:
ar.append(0)
while i < end:
ar[j] = ord(string[i])
j += 1
i += 1
return ar
#
# Mode of Operation Encryption
# stringIn - Input String
# mode - mode of type modeOfOperation
# hexKey - a hex key of the bit length size
# size - the bit length of the key
# hexIV - the 128 bit hex Initilization Vector
#
def encrypt(self,stringIn,mode,key,size,IV):
if len(key)%size:
return None
if len(IV)%16:
return None
# the AES input/output
plaintext = []
iput = []
output = []
ciphertext = []
while len(ciphertext) < 16:
ciphertext.append(0)
# the output cipher string
cipherOut = []
# char firstRound
firstRound = True
if stringIn != None:
for j in range(int(math.ceil(float(len(stringIn))/16))):
start = j*16
end = j*16+16
if j*16+16 > len(stringIn):
end = len(stringIn)
plaintext = self.convertString(stringIn,start,end,mode)
if mode == self.modeOfOperation["CFB"]:
if firstRound:
output = self.aes.encrypt(IV, key, size)
firstRound = False
else:
output = self.aes.encrypt(iput, key, size)
for i in range(16):
if len(plaintext)-1 < i:
ciphertext[i] = 0 ^ output[i]
elif len(output)-1 < i:
ciphertext[i] = plaintext[i] ^ 0
elif len(plaintext)-1 < i and len(output) < i:
ciphertext[i] = 0 ^ 0
else:
ciphertext[i] = plaintext[i] ^ output[i]
for k in range(end-start):
cipherOut.append(ciphertext[k])
iput = ciphertext
elif mode == self.modeOfOperation["OFB"]:
if firstRound:
output = self.aes.encrypt(IV, key, size)
firstRound = False
else:
output = self.aes.encrypt(iput, key, size)
for i in range(16):
if len(plaintext)-1 < i:
ciphertext[i] = 0 ^ output[i]
elif len(output)-1 < i:
ciphertext[i] = plaintext[i] ^ 0
elif len(plaintext)-1 < i and len(output) < i:
ciphertext[i] = 0 ^ 0
else:
ciphertext[i] = plaintext[i] ^ output[i]
for k in range(end-start):
cipherOut.append(ciphertext[k])
iput = output
elif mode == self.modeOfOperation["CBC"]:
for i in range(16):
if firstRound:
iput[i] = plaintext[i] ^ ciphertext[i]
else:
iput[i] = plaintext[i] ^ IV[i]
firstRound = False
ciphertext = self.aes.encrypt(iput, key, size)
# always 16 bytes because of the padding for CBC
for k in range(16):
cipherOut.append(ciphertext[k])
return mode,len(stringIn),cipherOut
#
# Mode of Operation Decryption
# cipherIn - Encrypted String
# originalsize - The unencrypted string length - required for CBC
# mode - mode of type modeOfOperation
# key - a number array of the bit length size
# size - the bit length of the key
# IV - the 128 bit number array Initilization Vector
#
def decrypt(self,cipherIn,originalsize,mode,key,size,IV):
# cipherIn = unescCtrlChars(cipherIn)
if len(key)%size:
return None
if len(IV)%16:
return None
# the AES input/output
ciphertext = []
iput = []
output = []
plaintext = []
while len(plaintext) < 16:
plaintext.append(0)
# the output plain text string
stringOut = ''
# char firstRound
firstRound = True
if cipherIn != None:
for j in range(int(math.ceil(float(len(cipherIn))/16))):
start = j*16
end = j*16+16
if j*16+16 > len(cipherIn):
end = len(cipherIn)
ciphertext = cipherIn[start:end]
if mode == self.modeOfOperation["CFB"]:
if firstRound:
output = self.aes.encrypt(IV, key, size)
firstRound = False
else:
output = self.aes.encrypt(iput, key, size)
for i in range(16):
if len(output)-1 < i:
plaintext[i] = 0 ^ ciphertext[i]
elif len(ciphertext)-1 < i:
plaintext[i] = output[i] ^ 0
elif len(output)-1 < i and len(ciphertext) < i:
plaintext[i] = 0 ^ 0
else:
plaintext[i] = output[i] ^ ciphertext[i]
for k in range(end-start):
stringOut += chr(plaintext[k])
iput = ciphertext
elif mode == self.modeOfOperation["OFB"]:
if firstRound:
output = self.aes.encrypt(IV, key, size)
firstRound = False
else:
output = self.aes.encrypt(iput, key, size)
for i in range(16):
if len(output)-1 < i:
plaintext[i] = 0 ^ ciphertext[i]
elif len(ciphertext)-1 < i:
plaintext[i] = output[i] ^ 0
elif len(output)-1 < i and len(ciphertext) < i:
plaintext[i] = 0 ^ 0
else:
plaintext[i] = output[i] ^ ciphertext[i]
for k in range(end-start):
stringOut += chr(plaintext[k])
iput = output
elif mode == self.modeOfOperation["CBC"]:
output = self.aes.decrypt(ciphertext, key, size)
for i in range(16):
if firstRound:
plaintext[i] = IV[i] ^ output[i]
else:
plaintext[i] = iput[i] ^ output[i]
firstRound = False
if originalsize < end:
for k in range(originalsize-start):
stringOut += chr(plaintext[k])
else:
for k in range(end-start):
stringOut += chr(plaintext[k])
iput = ciphertext;
return stringOut;
#
# END MODE OF OPERATION SECTION
#
if __name__ == "__main__":
moo = AESModeOfOperation()
mode,orig_len,ciph = moo.encrypt("This is a test!",moo.modeOfOperation["OFB"],[143,194,34,208,145,203,230,143,177,246,97,206,145,92,255,84],moo.aes.keySize["SIZE_128"],[103,35,148,239,76,213,47,118,255,222,123,176,106,134,98,92])
print ciph
decr = moo.decrypt(ciph,orig_len,mode,[143,194,34,208,145,203,230,143,177,246,97,206,145,92,255,84],moo.aes.keySize["SIZE_128"],[103,35,148,239,76,213,47,118,255,222,123,176,106,134,98,92])
print decr