|
| 1 | +class Solution { |
| 2 | + public int[] pathExistenceQueries(int n, int[] nums, int maxDiff, int[][] queries) { |
| 3 | + int[] ans = new int[queries.length]; |
| 4 | + int[] indexMap = new int[n]; |
| 5 | + int[] sortedNums = new int[n]; |
| 6 | + Pair<Integer, Integer>[] sortedNumAndIndexes = new Pair[n]; |
| 7 | + |
| 8 | + for (int i = 0; i < n; ++i) |
| 9 | + sortedNumAndIndexes[i] = new Pair<>(nums[i], i); |
| 10 | + |
| 11 | + Arrays.sort(sortedNumAndIndexes, Comparator.comparingInt(Pair::getKey)); |
| 12 | + |
| 13 | + for (int i = 0; i < n; ++i) { |
| 14 | + final int num = sortedNumAndIndexes[i].getKey(); |
| 15 | + final int sortedIndex = sortedNumAndIndexes[i].getValue(); |
| 16 | + sortedNums[i] = num; |
| 17 | + indexMap[sortedIndex] = i; |
| 18 | + } |
| 19 | + |
| 20 | + final int maxLevel = Integer.SIZE - Integer.numberOfLeadingZeros(n) + 1; |
| 21 | + // jump[i][j] := the index of the j-th ancestor of i |
| 22 | + int[][] jump = new int[n][maxLevel]; |
| 23 | + |
| 24 | + int right = 0; |
| 25 | + for (int i = 0; i < n; ++i) { |
| 26 | + while (right + 1 < n && sortedNums[right + 1] - sortedNums[i] <= maxDiff) |
| 27 | + ++right; |
| 28 | + jump[i][0] = right; |
| 29 | + } |
| 30 | + |
| 31 | + for (int level = 1; level < maxLevel; ++level) |
| 32 | + for (int i = 0; i < n; ++i) { |
| 33 | + final int prevJump = jump[i][level - 1]; |
| 34 | + jump[i][level] = jump[prevJump][level - 1]; |
| 35 | + } |
| 36 | + |
| 37 | + for (int i = 0; i < queries.length; ++i) { |
| 38 | + final int u = queries[i][0]; |
| 39 | + final int v = queries[i][1]; |
| 40 | + final int uIndex = indexMap[u]; |
| 41 | + final int vIndex = indexMap[v]; |
| 42 | + final int start = Math.min(uIndex, vIndex); |
| 43 | + final int end = Math.max(uIndex, vIndex); |
| 44 | + final int res = minJumps(jump, start, end, maxLevel - 1); |
| 45 | + ans[i] = res == Integer.MAX_VALUE ? -1 : res; |
| 46 | + } |
| 47 | + |
| 48 | + return ans; |
| 49 | + } |
| 50 | + |
| 51 | + // Returns the minimum number of jumps from `start` to `end` using binary |
| 52 | + // lifting. |
| 53 | + private int minJumps(int[][] jump, int start, int end, int level) { |
| 54 | + if (start == end) |
| 55 | + return 0; |
| 56 | + if (jump[start][0] >= end) |
| 57 | + return 1; |
| 58 | + if (jump[start][level] < end) |
| 59 | + return Integer.MAX_VALUE; |
| 60 | + int j = level; |
| 61 | + for (; j >= 0; --j) |
| 62 | + if (jump[start][j] < end) |
| 63 | + break; |
| 64 | + return (1 << j) + minJumps(jump, jump[start][j], end, j); |
| 65 | + } |
| 66 | +} |
0 commit comments