Skip to content

Latest commit

 

History

History
164 lines (122 loc) · 8.83 KB

README.md

File metadata and controls

164 lines (122 loc) · 8.83 KB

PyGenAlgo: A simple and powerful toolkit for genetic algorithms.

Logo

"Genetic Algorithms (GA), are meta heuristic algorithms inspired by the process of natural selection and belong to a larger class of evolutionary algorithms (EA)."

-- (From Wikipedia, the free encyclopedia)

This repository implements a genetic algorithm (GA) in Python3 programming language, using only Numpy and Joblib as additional libraries. The basic approach offers a "StandardGA" class, where the whole population of chromosomes is replaced by a new one at the end of each iteration (or epoch). More recently, the new "IslandModelGA" class was added that offers a new genetic operator (MigrationOperator), that allows for periodic migration of the best individuals, among the different island populations.

NOTE: For computationally expensive fitness functions the StandardGA class provides the option of parallel evaluation (of the individual chromosomes), by setting in the method run(..., parallel=True). However, for fast fitness functions this will actually cause the algorithm to execute slower (due to the time required to open and close the parallel pool). So the default setting here is "parallel=False". Regarding the IslandModelGA, this is running in parallel mode by definition.

NEWS: Several new genetic operators have been added, such as: PositionBasedCrossover(POS), PartiallyMappedCrossover (PMX) and OrderCrossover (OX1). These operators were added to address combinatorial problems where the genome can become invalid by the application of the other standard operators. Additionally, the Boltzmann Selector has been implemented where the individuals, that will form the new population, are selected using a temperature controlled Boltzmann distribution.

The current implementation offers a variety of genetic operators including:

(NOTE: Meta operators call randomly the other operators (crossover/mutation/migration) from a predefined set, with equal probability.)

Incorporating additional genetic operators is easily facilitated by inheriting from the base classes:

and implementing the basic interface as described therein. In the examples that follow I show how one can use this code to run a GA for optimization problems (maximization/minimization) with and without constraints. The project is ongoing so new things might come along the way.

Installation

There are two options to install the software.

The easiest way is to visit the GitHub web-page of the project and simply download the source code in zip format. This option does not require a prior installation of git on the computer.

Alternatively one can clone the project directly using git as follows:

git clone https://github.com/vrettasm/PyGeneticAlgorithms.git

Required packages

The recommended version is Python 3.10 (and above). To simplify the required packages just use:

pip install -r requirements.txt

Fitness function

The most important thing the user has to do is to define the "fitness function". A template is provided here, in addition to the examples below.

from pygenalgo.genome.chromosome import Chromosome

# Fitness function <template>.
def fitness_func(individual: Chromosome, f_min: bool = False):
    """
    This is how a fitness function should look like. The whole
    evaluation should be implemented (or wrapped around) this
    function.
    
    :param individual: Individual chromosome to be evaluated.
    
    :param f_min: Bool flag indicating whether we are dealing
    with a minimization or maximization problem.
    """
    
    # CODE TO IMPLEMENT.
    
    # Assign the estimated value.
    f_val = ...
    
    # If we want minimization we return the negative.
    return -f_val if f_min else f_val
# _end_def_

Once the fitness function is defined correctly the next steps are straightforward as described in the examples.

Examples

Some optimization examples on how to use these algorithms:

Problem Variables Objectives Constraints Description
Sphere M (=5) 1 no serial
Rastrigin M (=5) 1 no serial
Rosenbrock M (=2) 1 1 serial
Binh & Korn M (=2) 2 2 serial
Sphere M (=10) 1 no parallel
Easom M (=2) 1 no parallel
Traveling Salesman Problem M (=10) 1 yes serial
N-Queens puzzle M (=8) 1 yes parallel
OneMax M (=50) 1 no serial
Tanaka M (=2) 2 2 serial
Zakharov M (=8) 1 no serial
Osyczka 6 2 6 parallel

Constraint optimization problems can be easily addressed using the Penalty Method. Moreover, multi-objective optimizations (with or without constraints) can also be solved, using the weighted sum method, as shown in the examples above.

References and Documentation

This work is described in:

  • Michail D. Vrettas and Stefano Silvestri (2024). "PyGenAlgo: a simple and powerful toolkit for genetic algorithms". (Submitted for publication at Journal SoftwareX / under review).

The full documentation (in pdf) can be downloaded from here.

Contact

For any questions/comments (regarding this code) please contact me at: [email protected]