-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtrain.py
executable file
·274 lines (252 loc) · 13.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import inspect
import random
import sys
import nlp2
from datasets import load_dataset, Audio
from transformers import Seq2SeqTrainer
from transformers import Trainer
from transformers import TrainingArguments, Seq2SeqTrainingArguments
from transformers import Wav2Vec2CTCTokenizer
from transformers import Wav2Vec2FeatureExtractor
from transformers import Wav2Vec2Processor
from transformers import WhisperFeatureExtractor
from transformers import WhisperForConditionalGeneration
from transformers import WhisperProcessor
from module.args import parse_args
from module.data_processing import encode_dataset, DataCollatorCTCWithPadding, prepare_dataset_hf, \
prepare_dataset_custom, DataCollatorSpeechSeq2SeqWithPadding
from module.g2p import G2P
from module.metric import cer_cal, wer_cal
from module.model import Wav2Vec2ForCTC
from module.utility import FreezingCallback
def main(arg=None):
input_arg, other_arg = parse_args(sys.argv[1:]) if arg is None else parse_args(arg)
print("input_arg", input_arg)
repo_name = f"{input_arg['model_config']}-{input_arg['custom_set_train'] if 'custom_set_train' in input_arg else input_arg['train_subset']}"
repo_name = repo_name.replace("/", "_")
if 'openai/whisper' in input_arg['model_config']:
feature_extractor = WhisperFeatureExtractor.from_pretrained(input_arg['model_config'])
processor = WhisperProcessor.from_pretrained(input_arg['model_config'], task="transcribe")
processor.save_pretrained(repo_name)
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
model.config.forced_decoder_ids = None
model.config.suppress_tokens = []
audio_feature_key = inspect.getfullargspec(model.forward).args[1]
data_collator = DataCollatorSpeechSeq2SeqWithPadding(processor=processor, audio_feature_key=audio_feature_key)
else:
tokenizer = Wav2Vec2CTCTokenizer.from_pretrained(input_arg['tokenize_config'],
use_auth_token=input_arg['use_auth_token'])
feature_extractor = Wav2Vec2FeatureExtractor(feature_size=1, sampling_rate=16000, padding_value=0.0,
do_normalize=True,
return_attention_mask=True)
processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer)
processor.save_pretrained(repo_name)
model = Wav2Vec2ForCTC.from_pretrained(
input_arg['model_config'],
activation_dropout=input_arg.get('activation_dropout', 0.01),
attention_dropout=input_arg.get('attention_dropout', 0.01),
feat_proj_dropout=input_arg.get('feat_proj_dropout', 0.01),
feat_quantizer_dropout=input_arg.get('feat_quantizer_dropout', 0.01),
final_dropout=input_arg.get('final_dropout', 0.01),
hidden_dropout=input_arg.get('hidden_dropout', 0.01),
layerdrop=0.0,
ctc_loss_reduction="mean",
pad_token_id=processor.tokenizer.pad_token_id,
vocab_size=len(processor.tokenizer),
use_auth_token=input_arg['use_auth_token'],
ignore_mismatched_sizes=True
)
audio_feature_key = inspect.getfullargspec(model.forward).args[1]
data_collator = DataCollatorCTCWithPadding(processor=processor, padding=True,
audio_feature_key=audio_feature_key)
# data set
if 'custom_set_train' in input_arg:
dataset = load_dataset('csv', data_files=input_arg['custom_set_train'], cache_dir=input_arg['cache_dir'])
dataset = dataset.filter(lambda e: nlp2.is_file_exist(e['path']))
if 'custom_set_test' in input_arg:
dataset_test = load_dataset('csv', data_files=input_arg['custom_set_test'],
cache_dir=input_arg['cache_dir'])
dataset_test = dataset_test.filter(lambda e: nlp2.is_file_exist(e['path']))
data_test = dataset_test['train']
else:
dataset = dataset['train'].train_test_split(test_size=0.1)
data_test = dataset['test']
data_train = dataset['train']
data_train = data_train.map(prepare_dataset_custom, num_proc=input_arg["num_proc"],
fn_kwargs={'audio_feature_key': audio_feature_key})
data_test = data_test.map(prepare_dataset_custom, num_proc=input_arg["num_proc"],
fn_kwargs={'audio_feature_key': audio_feature_key})
elif 'train_set' in input_arg:
data_train = load_dataset(input_arg['train_set'], input_arg['train_subset'],
split=input_arg['train_split'], use_auth_token=input_arg['use_auth_token'])
data_test = load_dataset(input_arg.get('test_set', input_arg['train_set']),
input_arg['test_subset'] if 'test_subset' in input_arg else input_arg['train_subset'],
split=input_arg['test_split'],
use_auth_token=input_arg['use_auth_token'])
try:
data_train = data_train.remove_columns(
["accent", "age", "client_id", "down_votes", "gender", "locale", "segment", "up_votes"])
data_test = data_test.remove_columns(
["accent", "age", "client_id", "down_votes", "gender", "locale", "segment", "up_votes"])
except:
pass
data_train = data_train.cast_column("audio", Audio(sampling_rate=16_000))
data_test = data_test.cast_column("audio", Audio(sampling_rate=16_000))
data_train = data_train.map(prepare_dataset_hf,
fn_kwargs={'processor': processor, 'audio_feature_key': audio_feature_key},
remove_columns=data_train.column_names)
data_test = data_test.map(prepare_dataset_hf,
fn_kwargs={'processor': processor, 'audio_feature_key': audio_feature_key},
remove_columns=data_test.column_names)
print("init dataset")
print("data train", data_train)
print("data test", data_test)
if not input_arg.get('load_cache', False):
print("before filtering audio length")
print("data train", data_train)
print("data test", data_test)
if input_arg.get('max_input_length_in_sec', None):
max_input_length_in_sec = input_arg['max_input_length_in_sec']
min_input_length_in_sec = 1
data_train = data_train.filter(
lambda
x: min_input_length_in_sec * processor.feature_extractor.sampling_rate < x < max_input_length_in_sec * processor.feature_extractor.sampling_rate,
input_columns=["lengths"])
data_test = data_test.filter(
lambda
x: min_input_length_in_sec * processor.feature_extractor.sampling_rate < x < max_input_length_in_sec * processor.feature_extractor.sampling_rate,
input_columns=["lengths"])
print("after filtering audio length")
print("data train", data_train)
print("data test", data_test)
print("before filtering label length")
print("data train", data_train)
print("data test", data_test)
data_train = data_train.filter(
lambda x: x is not None and 0 < len(x),
input_columns=["labels"])
data_test = data_test.filter(
lambda x: x is not None and 0 < len(x),
input_columns=["labels"])
print("after filtering label length")
print("data train", data_train)
print("data test", data_test)
print("before encoding dataset")
print("data train", data_train)
print("data test", data_test)
phonemize = input_arg.get('phoneme', False)
if phonemize:
if 'g2p' in phonemize:
backend = G2P(delimiter=tokenizer.word_delimiter_token)
separator = None
else:
from phonemizer.backend import EspeakBackend
from phonemizer.separator import Separator
separator = Separator(phone="", word=tokenizer.word_delimiter_token, syllable="")
backend = EspeakBackend(language="en-us", language_switch="remove-flags")
if not input_arg.get('only_eval', False):
data_train = data_train.map(encode_dataset, fn_kwargs={'processor': processor,
'phonemize': phonemize,
'separator': separator,
'backend': backend})
data_test = data_test.map(encode_dataset,
fn_kwargs={'processor': processor, 'phonemize': phonemize,
'separator': separator, 'backend': backend})
else:
if not input_arg.get('only_eval', False):
data_train = data_train.map(encode_dataset,
fn_kwargs={'processor': processor})
data_test = data_test.map(encode_dataset,
fn_kwargs={'processor': processor})
print("after encoding dataset")
print("data train", data_train)
print("data test", data_test)
data_train.save_to_disk(f"{repo_name}-train.data")
data_test.save_to_disk(f"{repo_name}-test.data")
else:
data_train.load_from_disk(f"{repo_name}-train.data")
data_test.load_from_disk(f"{repo_name}-test.data")
print("finalize dataset")
print("data train", data_train)
print("data test", data_test)
print("train labels", data_train[0]['labels'])
print("test labels", data_test[0]['labels'])
if input_arg.get('sweep_split_shard', False):
shuffled_dataset = data_train.shuffle(seed=42)
data_train = shuffled_dataset.shard(num_shards=input_arg.get('sweep_split_shard'), index=0)
data_train = data_train.shard(num_shards=input_arg.get('sweep_split_shard'), index=0)
data_test = data_train
if 'openai/whisper' in input_arg['model_config']:
trainer_class = Seq2SeqTrainer
trainer_aug_class = Seq2SeqTrainingArguments
else:
trainer_class = Trainer
trainer_aug_class = TrainingArguments
model.gradient_checkpointing_enable()
training_args = trainer_aug_class(
output_dir=input_arg.get("output_dir", repo_name),
length_column_name="lengths",
group_by_length=input_arg["group_by_length"],
per_device_train_batch_size=int(input_arg['batch']),
per_device_eval_batch_size=int(input_arg['batch']),
gradient_accumulation_steps=int(input_arg['grad_accum']),
eval_accumulation_steps=int(input_arg['grad_accum']),
evaluation_strategy="epoch",
save_strategy="epoch",
save_steps=input_arg.get('eval_steps', 400),
eval_steps=input_arg.get('eval_steps', 400),
ddp_find_unused_parameters=True,
resume_from_checkpoint=input_arg.get("checkpoint", False),
overwrite_output_dir=input_arg.get("overwrite_output_dir", False),
load_best_model_at_end=True,
greater_is_better=False,
metric_for_best_model='cer',
num_train_epochs=input_arg.get('epoch', 60),
fp16=True,
logging_steps=input_arg.get('logging_steps', 10),
learning_rate=input_arg.get('learning_rate', 2.34e-4),
warmup_steps=input_arg.get('warmup_steps', 100),
save_total_limit=input_arg.get('save_total_limit', 5),
push_to_hub=False,
report_to="all"
)
if 'openai/whisper' in input_arg['model_config']:
training_args.predict_with_generate = True
training_args.generation_max_length = 225
def compute_metrics(pred):
pred_ids = pred.predictions
pred_ids = [i[i != -100] for i in pred_ids]
pred_str = processor.tokenizer.batch_decode(pred_ids, skip_special_tokens=True, group_tokens=True)
# we do not want to group tokens when computing the metrics
label_ids = pred.label_ids
label_ids = [i[i != -100] for i in label_ids]
label_str = processor.tokenizer.batch_decode(label_ids, skip_special_tokens=True, group_tokens=False)
cer = cer_cal(label_str, pred_str)
wer = wer_cal(label_str, pred_str)
pred_result = [[l, p, cer_cal([l], [p])] for l, p in zip(label_str, pred_str)]
nlp2.write_csv(pred_result, 'pred.csv')
# print 10 predict result randomly for debug
random.shuffle(pred_result)
print("pred_result")
print("=================================")
for i in range(10):
print(pred_result[i])
print("=================================")
return {"cer": cer, "wer": wer}
trainer = trainer_class(
model=model,
data_collator=data_collator,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=data_train,
eval_dataset=data_test,
tokenizer=processor.feature_extractor,
)
if not input_arg.get('only_eval', False):
freezing_callback = FreezingCallback(trainer, model, input_arg.get('unfreeze_warmup_steps', 1000))
trainer.add_callback(freezing_callback)
trainer.train(input_arg.get("checkpoint", None))
else:
trainer.evaluate()
if __name__ == "__main__":
main()