-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolution.py
40 lines (33 loc) · 1.12 KB
/
solution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# function digPow(n, p){
# var digits = n.toString().split('');
# var result = 0;
# for(var i=0; i<digits.length; i++){
# result = result + Math.pow(digits[i], p);
# p++;
# }
# var data = result/n;
# if(result % n === 0){
# return data;
# }else{
# return -1;
# }
# }
# Some numbers have funny properties.
# For example:
# 89 --> 8¹ + 9² = 89 * 1
# 695 --> 6² + 9³ + 5⁴= 1390 = 695 * 2
# 46288 --> 4³ + 6⁴+ 2⁵ + 8⁶ + 8⁷ = 2360688 = 46288 * 51
# Given a positive integer n written as abcd... (a, b, c, d... being digits) and a positive integer p
# we want to find a positive integer k, if it exists,
# such as the sum of the digits of n taken to the successive powers of p is equal to k * n.
# In other words:
# Is there an integer k such as : (a ^ p + b ^ (p+1) + c ^(p+2) + d ^ (p+3) + ...) = n * k
# If it is the case we will return k, if not return -1.
# Note: n and p will always be given as strictly positive integers.
def dig_pow(n, p):
digits = list(map(int, str(n)))
power = 0
for i in digits:
power += i**p
p += 1
return power / n if not power % n else -1