-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
78 lines (72 loc) · 2.47 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import torch
import numpy as np
import matplotlib.pyplot as plt
import config
from skimage import color
def save_results(G, val_loader, epoch, folder=config.SAVE_DIR):
data = next(iter(val_loader))
Ls, ABs = data['L'], data['ab']
Ls = Ls.to(config.DEVICE)
ABs = ABs.to(config.DEVICE)
G.eval()
with torch.no_grad():
fake_color = G(Ls)
fake_imgs = lab_to_rgb(Ls, fake_color)
real_imgs = lab_to_rgb(Ls, ABs)
fig = plt.figure(figsize=(15, 9))
for i in range(5):
ax = plt.subplot(3, 5, i + 1)
ax.imshow(Ls[i][0].cpu(), cmap='gray')
ax.axis("off")
ax = plt.subplot(3, 5, i + 1 + 5)
ax.imshow(fake_imgs[i])
ax.axis("off")
ax = plt.subplot(3, 5, i + 1 + 10)
ax.imshow(real_imgs[i])
ax.axis("off")
plt.show()
fig.savefig(f"{folder}val_result_{epoch}.png")
G.train()
def test_an_image(G, test_img_loader, img_name="", folder=config.SAVE_DIR):
data = next(iter(test_img_loader))
Ls = data['L'].to(config.DEVICE)
G.eval()
with torch.no_grad():
fake_color = G(Ls)
fake_imgs = lab_to_rgb(Ls, fake_color)
fig = plt.figure(figsize=(6, 12))
ax = plt.subplot(2, 1, 1)
ax.imshow(Ls[0][0].cpu(), cmap='gray')
ax.axis("off")
ax = plt.subplot(2, 1, 2)
ax.imshow(fake_imgs[0])
ax.axis("off")
plt.show()
fig.savefig(f"{folder}test_result_{img_name}.png")
def save_checkpoint(model, optimizer, filename="/my_checkpoint.pth.tar"):
print("=> Saving checkpoint")
checkpoint = {
"model_state": model.state_dict(),
"optim_state": optimizer.state_dict(),
}
torch.save(checkpoint, filename)
def load_checkpoint(checkpoint_file, model, optimizer, lr):
print("=> Loading checkpoint")
checkpoint = torch.load(checkpoint_file, map_location=config.DEVICE)
model.load_state_dict(checkpoint["model_state"])
optimizer.load_state_dict(checkpoint["optim_state"])
for param_group in optimizer.param_groups:
param_group["lr"] = lr
def denorm(x):
out = (x + 1) / 2
return out.clamp(-1, 1)
def lab_to_rgb(L, ab):
L, ab = denorm(L), denorm(ab)
L = (L + 1.) * 50.
ab = ab * 110.
Lab = torch.cat([L, ab], dim=1).permute(0, 2, 3, 1).cpu().numpy()
rgb_imgs = []
for img in Lab:
rgb_img = color.lab2rgb(img)
rgb_imgs.append(rgb_img)
return np.stack(rgb_imgs, axis=0)