-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRAMAS_sensitivity_analysis_dispersal.R
77 lines (66 loc) · 1.85 KB
/
RAMAS_sensitivity_analysis_dispersal.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
###############################################
# script for RAMAS sensitivity analysis
##
###############################################
library(rgdal)
library(raster)
library(sp)
library(tidyr)
library(mptools)
require(reshape2)
# data source
species_name <-'Clivia_miniata'
path<-paste('C:/Users/Vivienne Groner/Desktop/Vivienne/2020/RAMAS/Clivia_miniata_2020/sensitivity_analysis/RAMAS_metapop_dispersal/',sep='')
time<-2020:2050
time1<-2019:2050
infiles<-list.files(path, pattern='.MP')
infiles
# load data mptools
mp1<-list()
res<-list()
names_list<-list()
i=1
for (j in 1:length(infiles)){
mp1[[j]] <- (paste(path,infiles[[j]],sep=''))
res[[j]]<- results(mp=mp1[[j]])
names_list[[i]]<-paste(infiles[[j]])
i=i+1
}
df<-data.frame(time)
for (k in 1:(length(infiles))){
df<-cbind(df,res[[k]]$results[,,'ALL'])
}
df
head(df)
#write.csv(df,file=paste(path,parameter,'_sensitivity_analysis.csv',sep=''))
names_list
#2030
#site1_low2030<-
(df[11,2]-(2*df[11,3]))*100/32825
#site1_high2030<-
(df[11,6]+(2*df[11,7]))*100/32825
#site2_low2030<-
(df[11,10]-(2*df[11,11]))*100/32825
#site2_high2030<-
(df[11,14]+(2*df[11,15]))*100/32825
#2040
#site1_low2040<-
(df[21,2]-(2*df[21,3]))*100/32825
#site1_high2040<-
(df[21,6]+(2*df[21,7]))*100/32825
#site2_low2040<-
(df[21,10]-(2*df[21,11]))*100/32825
#site2_high2040<-
(df[21,14]+(2*df[21,15]))*100/32825
#2050
#site1_low2050<-
(df[31,2]-(2*df[31,3]))*100/32825
#site1_high2050<-
(df[31,6]+(2*df[31,7]))*100/32825
#site2_low2050<-
(df[31,10]-(2*df[31,11]))*100/32825
#site2_high2050<-
(df[31,14]+(2*df[31,15]))*100/32825
#############################################################################################
#### END ###
#############################################################################################