-
Notifications
You must be signed in to change notification settings - Fork 11
/
model.py
145 lines (115 loc) · 4.73 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import json
import mlx.core as mx
import mlx.nn as nn
from pydantic import BaseModel
from huggingface_hub import snapshot_download
from typing import List, Optional
from transformers import BertTokenizer
def average_pool(last_hidden_state: mx.array, attention_mask: mx.array) -> mx.array:
last_hidden = mx.multiply(last_hidden_state, attention_mask[..., None])
return last_hidden.sum(axis=1) / attention_mask.sum(axis=1)[..., None]
class ModelConfig(BaseModel):
dim: int = 1024
num_attention_heads: int = 16
num_hidden_layers: int = 24
vocab_size: int = 30522
attention_probs_dropout_prob: float = 0.1
hidden_dropout_prob: float = 0.1
layer_norm_eps: float = 1e-12
max_position_embeddings: int = 512
class TransformerEncoderLayer(nn.Module):
"""
A transformer encoder layer with (the original BERT) post-normalization.
"""
def __init__(
self,
dims: int,
num_heads: int,
mlp_dims: Optional[int] = None,
layer_norm_eps: float = 1e-12,
):
super().__init__()
mlp_dims = mlp_dims or dims * 4
self.attention = nn.MultiHeadAttention(dims, num_heads, bias=True)
self.ln1 = nn.LayerNorm(dims, eps=layer_norm_eps)
self.ln2 = nn.LayerNorm(dims, eps=layer_norm_eps)
self.linear1 = nn.Linear(dims, mlp_dims)
self.linear2 = nn.Linear(mlp_dims, dims)
self.gelu = nn.GELU()
def __call__(self, x, mask):
attention_out = self.attention(x, x, x, mask)
add_and_norm = self.ln1(x + attention_out)
ff = self.linear1(add_and_norm)
ff_gelu = self.gelu(ff)
ff_out = self.linear2(ff_gelu)
x = self.ln2(ff_out + add_and_norm)
return x
class TransformerEncoder(nn.Module):
def __init__(
self, num_layers: int, dims: int, num_heads: int, mlp_dims: Optional[int] = None
):
super().__init__()
self.layers = [
TransformerEncoderLayer(dims, num_heads, mlp_dims)
for i in range(num_layers)
]
def __call__(self, x, mask):
for layer in self.layers:
x = layer(x, mask)
return x
class BertEmbeddings(nn.Module):
def __init__(self, config: ModelConfig):
self.word_embeddings = nn.Embedding(config.vocab_size, config.dim)
self.token_type_embeddings = nn.Embedding(2, config.dim)
self.position_embeddings = nn.Embedding(
config.max_position_embeddings, config.dim
)
self.norm = nn.LayerNorm(config.dim, eps=config.layer_norm_eps)
def __call__(self, input_ids: mx.array, token_type_ids: mx.array) -> mx.array:
words = self.word_embeddings(input_ids)
position = self.position_embeddings(
mx.broadcast_to(mx.arange(input_ids.shape[1]), input_ids.shape)
)
token_types = self.token_type_embeddings(token_type_ids)
embeddings = position + words + token_types
return self.norm(embeddings)
class Bert(nn.Module):
def __init__(self, config: ModelConfig):
self.embeddings = BertEmbeddings(config)
self.encoder = TransformerEncoder(
num_layers=config.num_hidden_layers,
dims=config.dim,
num_heads=config.num_attention_heads,
)
self.pooler = nn.Linear(config.dim, config.dim)
def __call__(
self,
input_ids: mx.array,
token_type_ids: mx.array,
attention_mask: mx.array = None,
) -> tuple[mx.array, mx.array]:
x = self.embeddings(input_ids, token_type_ids)
if attention_mask is not None:
# convert 0's to -infs, 1's to 0's, and make it broadcastable
attention_mask = mx.log(attention_mask)
attention_mask = mx.expand_dims(attention_mask, (1, 2))
y = self.encoder(x, attention_mask)
return y, mx.tanh(self.pooler(y[:, 0]))
class Model:
def __init__(self) -> None:
# get converted embedding model
model_path = snapshot_download(repo_id="vegaluisjose/mlx-rag")
with open(f"{model_path}/config.json") as f:
model_config = ModelConfig(**json.load(f))
self.model = Bert(model_config)
self.model.load_weights(f"{model_path}/model.npz")
self.tokenizer = BertTokenizer.from_pretrained("thenlper/gte-large")
def run(self, input_text: List[str]) -> mx.array:
tokens = self.tokenizer(input_text, return_tensors="np", padding=True)
tokens = {key: mx.array(v) for key, v in tokens.items()}
last_hidden_state, _ = self.model(**tokens)
embeddings = average_pool(
last_hidden_state, tokens["attention_mask"].astype(mx.float32)
)
embeddings = embeddings / mx.linalg.norm(embeddings, ord=2, axis=1)[..., None]
return embeddings