-
Notifications
You must be signed in to change notification settings - Fork 187
/
Copy pathconvcode.py
805 lines (671 loc) · 33.6 KB
/
convcode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
# Authors: CommPy contributors
# License: BSD 3-Clause
""" Algorithms for Convolutional Codes """
from __future__ import division
import functools
import math
from warnings import warn
import matplotlib.colors as mcolors
import matplotlib.patches as mpatches
import matplotlib.path as mpath
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.collections import PatchCollection
from commpy.utilities import dec2bitarray, bitarray2dec, hamming_dist, euclid_dist
__all__ = ['Trellis', 'conv_encode', 'viterbi_decode']
class Trellis:
"""
Class defining a Trellis corresponding to a k/n - rate convolutional code.
This follow the classical representation. See [1] for instance.
Input and output are represented as little endian e.g. output = decimal(output[0], output[1] ...).
Parameters
----------
memory : 1D ndarray of ints
Number of memory elements per input of the convolutional encoder.
g_matrix : 2D ndarray of ints (decimal representation)
Generator matrix G(D) of the convolutional encoder. Each element of G(D) represents a polynomial.
Coef [i,j] is the influence of input i on output j.
feedback : 2D ndarray of ints (decimal representation), optional
Feedback matrix F(D) of the convolutional encoder. Each element of F(D) represents a polynomial.
Coef [i,j] is the feedback influence of input i on input j.
*Default* implies no feedback.
The backwards compatibility version is triggered if feedback is an int.
code_type : {'default', 'rsc'}, optional
Use 'rsc' to generate a recursive systematic convolutional code.
If 'rsc' is specified, then the first 'k x k' sub-matrix of
G(D) must represent a identity matrix along with a non-zero
feedback polynomial.
*Default* is 'default'.
polynomial_format : {'MSB', 'LSB', 'Matlab'}, optional
Defines how to interpret g_matrix and feedback. In MSB format, we have 1+D <-> 3 <-> 011.
In LSB format, which is used in Matlab, we have 1+D <-> 6 <-> 110.
*Default* is 'MSB' format.
Attributes
----------
k : int
Size of the smallest block of input bits that can be encoded using
the convolutional code.
n : int
Size of the smallest block of output bits generated using
the convolutional code.
total_memory : int
Total number of delay elements needed to implement the convolutional
encoder.
number_states : int
Number of states in the convolutional code trellis.
number_inputs : int
Number of branches from each state in the convolutional code trellis.
next_state_table : 2D ndarray of ints
Table representing the state transition matrix of the
convolutional code trellis. Rows represent current states and
columns represent current inputs in decimal. Elements represent the
corresponding next states in decimal.
output_table : 2D ndarray of ints
Table representing the output matrix of the convolutional code trellis.
Rows represent current states and columns represent current inputs in
decimal. Elements represent corresponding outputs in decimal.
Raises
------
ValueError
polynomial_format is not 'MSB', 'LSB' or 'Matlab'.
Examples
--------
>>> from numpy import array
>>> import commpy.channelcoding.convcode as cc
>>> memory = array([2])
>>> g_matrix = array([[5, 7]]) # G(D) = [1+D^2, 1+D+D^2]
>>> trellis = cc.Trellis(memory, g_matrix)
>>> print trellis.k
1
>>> print trellis.n
2
>>> print trellis.total_memory
2
>>> print trellis.number_states
4
>>> print trellis.number_inputs
2
>>> print trellis.next_state_table
[[0 2]
[0 2]
[1 3]
[1 3]]
>>>print trellis.output_table
[[0 3]
[3 0]
[1 2]
[2 1]]
References
----------
[1] S. Benedetto, R. Garello et G. Montorsi, "A search for good convolutional codes to be used in the
construction of turbo codes", IEEE Transactions on Communications, vol. 46, n. 9, p. 1101-1005, spet. 1998
"""
def __init__(self, memory, g_matrix, feedback=None, code_type='default', polynomial_format='MSB'):
[self.k, self.n] = g_matrix.shape
self.code_type = code_type
self.total_memory = memory.sum()
self.number_states = pow(2, self.total_memory)
self.number_inputs = pow(2, self.k)
self.next_state_table = np.zeros([self.number_states,
self.number_inputs], 'int')
self.output_table = np.zeros([self.number_states,
self.number_inputs], 'int')
if isinstance(feedback, int):
warn('Trellis will only accept feedback as a matrix in the future. '
'Using the backwards compatibility version that may contain bugs for k > 1 or with LSB format.',
DeprecationWarning)
if code_type == 'rsc':
for i in range(self.k):
g_matrix[i][i] = feedback
# Compute the entries in the next state table and the output table
for current_state in range(self.number_states):
for current_input in range(self.number_inputs):
outbits = np.zeros(self.n, 'int')
# Compute the values in the output_table
for r in range(self.n):
output_generator_array = np.zeros(self.k, 'int')
shift_register = dec2bitarray(current_state,
self.total_memory)
for l in range(self.k):
# Convert the number representing a polynomial into a
# bit array
generator_array = dec2bitarray(g_matrix[l][r],
memory[l] + 1)
# Loop over M delay elements of the shift register
# to compute their contribution to the r-th output
for i in range(memory[l]):
outbits[r] = (outbits[r] + \
(shift_register[i + l] * generator_array[i + 1])) % 2
output_generator_array[l] = generator_array[0]
if l == 0:
feedback_array = (dec2bitarray(feedback, memory[l] + 1)[1:] * shift_register[0:memory[l]]).sum()
shift_register[1:memory[l]] = \
shift_register[0:memory[l] - 1]
shift_register[0] = (dec2bitarray(current_input,
self.k)[0] + feedback_array) % 2
else:
feedback_array = (dec2bitarray(feedback, memory[l] + 1) *
shift_register[
l + memory[l - 1] - 1:l + memory[l - 1] + memory[l] - 1]).sum()
shift_register[l + memory[l - 1]:l + memory[l - 1] + memory[l] - 1] = \
shift_register[l + memory[l - 1] - 1:l + memory[l - 1] + memory[l] - 2]
shift_register[l + memory[l - 1] - 1] = \
(dec2bitarray(current_input, self.k)[l] + feedback_array) % 2
# Compute the contribution of the current_input to output
outbits[r] = (outbits[r] + \
(np.sum(dec2bitarray(current_input, self.k) * \
output_generator_array + feedback_array) % 2)) % 2
# Update the ouput_table using the computed output value
self.output_table[current_state][current_input] = \
bitarray2dec(outbits)
# Update the next_state_table using the new state of
# the shift register
self.next_state_table[current_state][current_input] = \
bitarray2dec(shift_register)
else:
if polynomial_format == 'MSB':
bit_order = -1
elif polynomial_format in ('LSB', 'Matlab'):
bit_order = 1
else:
raise ValueError('polynomial_format must be "LSB", "MSB" or "Matlab"')
if feedback is None:
feedback = np.identity(self.k, int)
if polynomial_format in ('LSB', 'Matlab'):
feedback *= 2**memory.max()
max_values_lign = memory.max() + 1 # Max number of value on a delay lign
# feedback_array[i] holds the i-th bit corresponding to each feedback polynomial.
feedback_array = np.zeros((max_values_lign, self.k, self.k), np.int8)
for i in range(self.k):
for j in range(self.k):
binary_view = dec2bitarray(feedback[i, j], max_values_lign)[::bit_order]
feedback_array[:max_values_lign, i, j] = binary_view[-max_values_lign-2:]
# g_matrix_array[i] holds the i-th bit corresponding to each g_matrix polynomial.
g_matrix_array = np.zeros((max_values_lign, self.k, self.n), np.int8)
for i in range(self.k):
for j in range(self.n):
binary_view = dec2bitarray(g_matrix[i, j], max_values_lign)[::bit_order]
g_matrix_array[:max_values_lign, i, j] = binary_view[-max_values_lign-2:]
# shift_regs holds on each column the state of a shift register.
# The first row is the input of each shift reg.
shift_regs = np.empty((max_values_lign, self.k), np.int8)
# Compute the entries in the next state table and the output table
for current_state in range(self.number_states):
for current_input in range(self.number_inputs):
current_state_array = dec2bitarray(current_state, self.total_memory)
# Set the first row as the input.
shift_regs[0] = dec2bitarray(current_input, self.k)
# Set the other rows based on the current_state
idx = 0
for idx_mem, mem in enumerate(memory):
shift_regs[1:mem+1, idx_mem] = current_state_array[idx:idx + mem]
idx += mem
# Compute the output table
outputs_array = np.einsum('ik,ikl->l', shift_regs, g_matrix_array) % 2
self.output_table[current_state, current_input] = bitarray2dec(outputs_array)
# Update the first line based on the feedback polynomial
np.einsum('ik,ilk->l', shift_regs, feedback_array, out=shift_regs[0])
shift_regs %= 2
# Update current state array and compute next state table
idx = 0
for idx_mem, mem in enumerate(memory):
current_state_array[idx:idx + mem] = shift_regs[:mem, idx_mem]
idx += mem
self.next_state_table[current_state, current_input] = bitarray2dec(current_state_array)
def _generate_grid(self, trellis_length):
""" Private method """
grid = np.mgrid[0.12:0.22*trellis_length:(trellis_length+1)*(0+1j),
0.1:0.5+self.number_states*0.1:self.number_states*(0+1j)].reshape(2, -1)
return grid
def _generate_states(self, trellis_length, grid, state_order, state_radius, font):
""" Private method """
state_patches = []
for state_count in range(self.number_states * trellis_length):
state_patch = mpatches.Circle(grid[:,state_count], state_radius,
color="#003399", ec="#cccccc")
state_patches.append(state_patch)
plt.text(grid[0, state_count], grid[1, state_count]-0.02,
str(state_order[state_count % self.number_states]),
ha="center", family=font, size=20, color="#ffffff")
return state_patches
def _generate_edges(self, trellis_length, grid, state_order, state_radius, edge_colors):
""" Private method """
edge_patches = []
for current_time_index in range(trellis_length-1):
grid_subset = grid[:,self.number_states * current_time_index:]
for state_count_1 in range(self.number_states):
input_count = 0
for state_count_2 in range(self.number_states):
dx = grid_subset[0, state_count_2+self.number_states] - grid_subset[0,state_count_1] - 2*state_radius
dy = grid_subset[1, state_count_2+self.number_states] - grid_subset[1,state_count_1]
if np.count_nonzero(self.next_state_table[state_order[state_count_1],:] == state_order[state_count_2]):
found_index = np.where(self.next_state_table[state_order[state_count_1]] ==
state_order[state_count_2])
edge_patch = mpatches.FancyArrow(grid_subset[0,state_count_1]+state_radius,
grid_subset[1,state_count_1], dx, dy, width=0.005,
length_includes_head = True, color = edge_colors[found_index[0][0]-1])
edge_patches.append(edge_patch)
input_count = input_count + 1
return edge_patches
def _generate_labels(self, grid, state_order, state_radius, font):
""" Private method """
for state_count in range(self.number_states):
for input_count in range(self.number_inputs):
edge_label = str(input_count) + "/" + str(
self.output_table[state_order[state_count], input_count])
plt.text(grid[0, state_count]-1.5*state_radius,
grid[1, state_count]+state_radius*(1-input_count-0.7),
edge_label, ha="center", family=font, size=14)
def visualize(self, trellis_length = 2, state_order = None,
state_radius = 0.04, edge_colors = None, save_path = None):
""" Plot the trellis diagram.
Parameters
----------
trellis_length : int, optional
Specifies the number of time steps in the trellis diagram.
Default value is 2.
state_order : list of ints, optional
Specifies the order in the which the states of the trellis
are to be displayed starting from the top in the plot.
Default order is [0,...,number_states-1]
state_radius : float, optional
Radius of each state (circle) in the plot.
Default value is 0.04
edge_colors : list of hex color codes, optional
A list of length equal to the number_inputs,
containing color codes that represent the edge corresponding
to the input.
save_path : str or None
If not None, save the figure to the file specified by its path.
*Default* is no saving.
"""
if edge_colors is None:
edge_colors = [mcolors.hsv_to_rgb((i/self.number_inputs, 1, 1)) for i in range(self.number_inputs)]
if state_order is None:
state_order = list(range(self.number_states))
font = "sans-serif"
fig = plt.figure(figsize=(12, 6), dpi=150)
ax = plt.axes([0,0,1,1])
trellis_patches = []
state_order.reverse()
trellis_grid = self._generate_grid(trellis_length)
state_patches = self._generate_states(trellis_length, trellis_grid,
state_order, state_radius, font)
edge_patches = self._generate_edges(trellis_length, trellis_grid,
state_order, state_radius,
edge_colors)
self._generate_labels(trellis_grid, state_order, state_radius, font)
trellis_patches.extend(state_patches)
trellis_patches.extend(edge_patches)
collection = PatchCollection(trellis_patches, match_original=True)
ax.add_collection(collection)
ax.set_xticks([])
ax.set_yticks([])
plt.legend(edge_patches, [str(i) + "-input" for i in range(self.number_inputs)])
plt.show()
if save_path is not None:
plt.savefig(save_path)
def visualize_fsm(self, state_order=None, state_radius=0.04, edge_colors=None, save_path=None):
""" Plot the FSM corresponding to the the trellis
This method is not intended to display large FSMs and its use is advisable only for simple trellises.
Parameters
----------
state_order : list of ints, optional
Specifies the order in the which the states of the trellis are to be displayed starting from the top in the
plot.
*Default* order is [0,...,number_states-1]
state_radius : float, optional
Radius of each state (circle) in the plot.
*Default* value is 0.04
edge_colors : list of hex color codes, optional
A list of length equal to the number_inputs, containing color codes that represent the edge corresponding to
the input.
save_path : str or None
If not None, save the figure to the file specified by its path.
*Default* is no saving.
"""
# Default arguments
if edge_colors is None:
edge_colors = [mcolors.hsv_to_rgb((i/self.number_inputs, 1, 1)) for i in range(self.number_inputs)]
if state_order is None:
state_order = list(range(self.number_states))
# Init the figure
ax = plt.axes((0, 0, 1, 1))
# Plot states
radius = state_radius * self.number_states
angles = 2 * np.pi / self.number_states * np.arange(self.number_states)
positions = [(radius * math.cos(angle), radius * math.sin(angle)) for angle in angles]
state_patches = []
arrows = []
for idx, state in enumerate(state_order):
state_patches.append(mpatches.Circle(positions[idx], state_radius, color="#003399", ec="#cccccc"))
plt.text(positions[idx][0], positions[idx][1], str(state), ha='center', va='center', size=20)
# Plot transition
for input in range(self.number_inputs):
next_state = self.next_state_table[state, input]
next_idx = (state_order == next_state).nonzero()[0][0]
output = self.output_table[state, input]
# Transition arrow
if next_state == state:
# Positions
arrow_start_x = positions[idx][0] + state_radius * math.cos(angles[idx] + math.pi / 6)
arrow_start_y = positions[idx][1] + state_radius * math.sin(angles[idx] + math.pi / 6)
arrow_end_x = positions[idx][0] + state_radius * math.cos(angles[idx] - math.pi / 6)
arrow_end_y = positions[idx][1] + state_radius * math.sin(angles[idx] - math.pi / 6)
arrow_mid_x = positions[idx][0] + state_radius * 2 * math.cos(angles[idx])
arrow_mid_y = positions[idx][1] + state_radius * 2 * math.sin(angles[idx])
# Add text
plt.text(arrow_mid_x, arrow_mid_y, '({})'.format(output),
ha='center', va='center', backgroundcolor=edge_colors[input])
else:
# Positions
dx = positions[next_idx][0] - positions[idx][0]
dy = positions[next_idx][1] - positions[idx][1]
relative_angle = math.atan(dy / dx) + np.where(dx > 0, 0, math.pi)
arrow_start_x = positions[idx][0] + state_radius * math.cos(relative_angle + math.pi * 0.05)
arrow_start_y = positions[idx][1] + state_radius * math.sin(relative_angle + math.pi * 0.05)
arrow_end_x = positions[next_idx][0] - state_radius * math.cos(relative_angle - math.pi * 0.05)
arrow_end_y = positions[next_idx][1] - state_radius * math.sin(relative_angle - math.pi * 0.05)
arrow_mid_x = (arrow_start_x + arrow_end_x) / 2 + \
radius * 0.25 * math.cos((angles[idx] + angles[next_idx]) / 2) * np.sign(dx)
arrow_mid_y = (arrow_start_y + arrow_end_y) / 2 + \
radius * 0.25 * math.sin((angles[idx] + angles[next_idx]) / 2) * np.sign(dx)
text_x = arrow_mid_x + 0.01 * math.cos((angles[idx] + angles[next_idx]) / 2)
text_y = arrow_mid_y + 0.01 * math.sin((angles[idx] + angles[next_idx]) / 2)
# Add text
plt.text(text_x, text_y, '({})'.format(output),
ha='center', va='center', backgroundcolor=edge_colors[input])
# Path creation
codes = (mpath.Path.MOVETO, mpath.Path.CURVE3, mpath.Path.CURVE3)
verts = ((arrow_start_x, arrow_start_y),
(arrow_mid_x, arrow_mid_y),
(arrow_end_x, arrow_end_y))
path = mpath.Path(verts, codes)
# Plot arrow
arrow = mpatches.FancyArrowPatch(path=path, mutation_scale=20, color=edge_colors[input])
ax.add_artist(arrow)
arrows.append(arrow)
# Format and plot
ax.set_xlim(radius * -2, radius * 2)
ax.set_ylim(radius * -2, radius * 2)
ax.add_collection(PatchCollection(state_patches, True))
plt.legend(arrows, [str(i) + "-input" for i in range(self.number_inputs)], loc='lower right')
plt.text(0, 1.5 * radius, 'Finite State Machine (output on transition)', ha='center', size=18)
plt.show()
if save_path is not None:
plt.savefig(save_path)
def conv_encode(message_bits, trellis, termination = 'term', puncture_matrix=None):
"""
Encode bits using a convolutional code.
Parameters
----------
message_bits : 1D ndarray containing {0, 1}
Stream of bits to be convolutionally encoded.
trellis: pre-initialized Trellis structure.
termination: {'cont', 'term'}, optional
Create ('term') or not ('cont') termination bits.
puncture_matrix: 2D ndarray containing {0, 1}, optional
Matrix used for the puncturing algorithm
Returns
-------
coded_bits : 1D ndarray containing {0, 1}
Encoded bit stream.
"""
k = trellis.k
n = trellis.n
total_memory = trellis.total_memory
rate = float(k)/n
code_type = trellis.code_type
if puncture_matrix is None:
puncture_matrix = np.ones((trellis.k, trellis.n))
number_message_bits = np.size(message_bits)
if termination == 'cont':
inbits = message_bits
number_inbits = number_message_bits
number_outbits = int(number_inbits/rate)
else:
# Initialize an array to contain the message bits plus the truncation zeros
if code_type == 'rsc':
inbits = message_bits
number_inbits = number_message_bits
number_outbits = int((number_inbits + k * total_memory)/rate)
else:
number_inbits = number_message_bits + total_memory + total_memory % k
inbits = np.zeros(number_inbits, 'int')
# Pad the input bits with M zeros (L-th terminated truncation)
inbits[0:number_message_bits] = message_bits
number_outbits = int(number_inbits/rate)
outbits = np.zeros(number_outbits, 'int')
if puncture_matrix is not None:
number_punctured_bits = int(number_outbits * puncture_matrix.sum() / puncture_matrix.size)
p_outbits = np.zeros(number_punctured_bits, 'int')
else:
p_outbits = np.zeros(int(number_outbits*
puncture_matrix[0:].sum()/np.size(puncture_matrix, 1)), 'int')
next_state_table = trellis.next_state_table
output_table = trellis.output_table
# Encoding process - Each iteration of the loop represents one clock cycle
current_state = 0
j = 0
for i in range(int(number_inbits/k)): # Loop through all input bits
current_input = bitarray2dec(inbits[i*k:(i+1)*k])
current_output = output_table[current_state][current_input]
outbits[j*n:(j+1)*n] = dec2bitarray(current_output, n)
current_state = next_state_table[current_state][current_input]
j += 1
if code_type == 'rsc' and termination == 'term':
term_bits = dec2bitarray(current_state, trellis.total_memory)
term_bits = term_bits[::-1]
for i in range(trellis.total_memory):
current_input = bitarray2dec(term_bits[i*k:(i+1)*k])
current_output = output_table[current_state][current_input]
outbits[j*n:(j+1)*n] = dec2bitarray(current_output, n)
current_state = next_state_table[current_state][current_input]
j += 1
j = 0
for i in range(number_outbits):
if puncture_matrix[0][i % np.size(puncture_matrix, 1)] == 1:
p_outbits[j] = outbits[i]
j = j + 1
return p_outbits
def _where_c(inarray, rows, cols, search_value, index_array):
number_found = 0
res = np.where(inarray == search_value)
i_s, j_s = res
for i, j in zip(i_s, j_s):
if inarray[i, j] == search_value:
index_array[number_found, 0] = i
index_array[number_found, 1] = j
number_found += 1
return number_found
@functools.lru_cache(maxsize=128, typed=False)
def _compute_branch_metrics(decoding_type, _r_codeword: tuple, _i_codeword_array: tuple):
r_codeword = np.array(_r_codeword)
i_codeword_array = np.array(_i_codeword_array)
if decoding_type == 'hard':
return hamming_dist(r_codeword.astype(int), i_codeword_array.astype(int))
elif decoding_type == 'soft':
neg_LL_0 = np.log(np.exp(r_codeword) + 1) # negative log-likelihood to have received a 0
neg_LL_1 = neg_LL_0 - r_codeword # negative log-likelihood to have received a 1
return np.where(i_codeword_array, neg_LL_1, neg_LL_0).sum()
elif decoding_type == 'unquantized':
i_codeword_array = 2 * i_codeword_array - 1
return euclid_dist(r_codeword, i_codeword_array)
def _acs_traceback(r_codeword, trellis, decoding_type,
path_metrics, paths, decoded_symbols,
decoded_bits, tb_count, t, count,
tb_depth, current_number_states):
k = trellis.k
n = trellis.n
number_states = trellis.number_states
number_inputs = trellis.number_inputs
branch_metric = 0.0
next_state_table = trellis.next_state_table
output_table = trellis.output_table
pmetrics = np.empty(number_inputs)
index_array = np.empty([number_states, 2], 'int')
# Loop over all the current states (Time instant: t)
for state_num in range(current_number_states):
# Using the next state table find the previous states and inputs
# leading into the current state (Trellis)
number_found = _where_c(next_state_table, number_states, number_inputs, state_num, index_array)
# Loop over all the previous states (Time instant: t-1)
for i in range(number_found):
previous_state = index_array[i, 0]
previous_input = index_array[i, 1]
# Using the output table, find the ideal codeword
i_codeword = output_table[previous_state, previous_input]
i_codeword_array = dec2bitarray(i_codeword, n)
# Compute Branch Metrics
branch_metric = _compute_branch_metrics(decoding_type, tuple(r_codeword), tuple(i_codeword_array))
# ADD operation: Add the branch metric to the
# accumulated path metric and store it in the temporary array
pmetrics[i] = path_metrics[previous_state, 0] + branch_metric
# COMPARE and SELECT operations
# Compare and Select the minimum accumulated path metric
path_metrics[state_num, 1] = pmetrics.min()
# Store the previous state corresponding to the minimum
# accumulated path metric
min_idx = pmetrics.argmin()
paths[state_num, tb_count] = index_array[min_idx, 0]
# Store the previous input corresponding to the minimum
# accumulated path metric
decoded_symbols[state_num, tb_count] = index_array[min_idx, 1]
if t >= tb_depth - 1:
current_state = path_metrics[:,1].argmin()
# Traceback Loop
for j in reversed(range(1, tb_depth)):
dec_symbol = decoded_symbols[current_state, j]
previous_state = paths[current_state, j]
decoded_bitarray = dec2bitarray(dec_symbol, k)
decoded_bits[t - tb_depth + 1 + (j - 1) * k + count:t - tb_depth + 1 + j * k + count] = decoded_bitarray
current_state = previous_state
paths[:,0:tb_depth-1] = paths[:,1:]
decoded_symbols[:,0:tb_depth-1] = decoded_symbols[:,1:]
def viterbi_decode(coded_bits, trellis, tb_depth=None, decoding_type='hard'):
"""
Decodes a stream of convolutionally encoded bits using the Viterbi Algorithm.
Parameters
----------
coded_bits : 1D ndarray
Stream of convolutionally encoded bits which are to be decoded.
treillis : treillis object
Treillis representing the convolutional code.
tb_depth : int
Traceback depth.
*Default* is 5 times the number of memories in the code.
decoding_type : str {'hard', 'soft', 'unquantized'}
The type of decoding to be used.
'hard' option is used for hard inputs (bits) to the decoder, e.g., BSC channel.
'soft' option is used for soft inputs (LLRs) to the decoder. LLRs are clipped in [-500, 500].
'unquantized' option is used for soft inputs (real numbers) to the decoder, e.g., BAWGN channel.
Returns
-------
decoded_bits : 1D ndarray
Decoded bit stream.
Raises
------
ValueError
If decoding_type is something else than 'hard', 'soft' or 'unquantized'.
References
----------
.. [1] Todd K. Moon. Error Correction Coding: Mathematical Methods and
Algorithms. John Wiley and Sons, 2005.
"""
# k = Rows in G(D), n = columns in G(D)
k = trellis.k
n = trellis.n
rate = k/n
total_memory = trellis.total_memory
# Number of message bits after decoding
L = int(len(coded_bits)*rate)
if tb_depth is None:
tb_depth = min(5 * total_memory, L)
path_metrics = np.full((trellis.number_states, 2), np.inf)
path_metrics[0][0] = 0
paths = np.empty((trellis.number_states, tb_depth), 'int')
paths[0][0] = 0
decoded_symbols = np.zeros([trellis.number_states, tb_depth], 'int')
decoded_bits = np.empty(int(math.ceil((L + tb_depth) / k) * k), 'int')
r_codeword = np.zeros(n, 'int')
tb_count = 1
count = 0
current_number_states = trellis.number_states
if decoding_type == 'soft':
coded_bits = coded_bits.clip(-500, 500)
for t in range(1, int((L+total_memory)/k)):
# Get the received codeword corresponding to t
if t <= L // k:
r_codeword = coded_bits[(t-1)*n:t*n]
# Pad with '0'
else:
if decoding_type == 'hard':
r_codeword[:] = 0
elif decoding_type == 'soft':
r_codeword[:] = 0
elif decoding_type == 'unquantized':
r_codeword[:] = -1
else:
raise ValueError('The available decoding types are "hard", "soft" and "unquantized')
_acs_traceback(r_codeword, trellis, decoding_type, path_metrics, paths,
decoded_symbols, decoded_bits, tb_count, t, count, tb_depth,
current_number_states)
if t >= tb_depth - 1:
tb_count = tb_depth - 1
count = count + k - 1
else:
tb_count = tb_count + 1
# Path metrics (at t-1) = Path metrics (at t)
path_metrics[:, 0] = path_metrics[:, 1]
return decoded_bits[:L]
def puncturing(message: np.ndarray, punct_vec: np.ndarray) -> np.ndarray:
"""
Applying of the punctured procedure.
Parameters
----------
message : 1D ndarray
Input message {0,1} bit array.
punct_vec : 1D ndarray
Puncturing vector {0,1} bit array.
Returns
-------
punctured : 1D ndarray
Output punctured vector {0,1} bit array.
"""
shift = 0
N = len(punct_vec)
punctured = []
for idx, item in enumerate(message):
if punct_vec[idx-shift*N] == 1:
punctured.append(item)
if idx%N == 0:
shift = shift + 1
return np.array(punctured)
def depuncturing(punctured: np.ndarray, punct_vec: np.ndarray, shouldbe: int) -> np.ndarray:
"""
Applying of the inserting zeros procedure.
Parameters
----------
punctured : 1D ndarray
Input punctured message {0,1} bit array.
punct_vec : 1D ndarray
Puncturing vector {0,1} bit array.
shouldbe : int
Length of the initial message (before puncturing).
Returns
-------
depunctured : 1D ndarray
Output vector {0,1} bit array.
"""
shift = 0
shift2 = 0
N = len(punct_vec)
depunctured = np.zeros((shouldbe,))
for idx, item in enumerate(depunctured):
if punct_vec[idx - shift*N] == 1:
depunctured[idx] = float(punctured[idx-shift2])
else:
shift2 = shift2 + 1
if idx%N == 0:
shift = shift + 1
return depunctured