-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWindowMedian.py
49 lines (45 loc) · 1.32 KB
/
WindowMedian.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import numpy as np
def timestamp(pair):
return pair[0]
def per_func(win_arr):
values = []
for _, d in win_arr:
values.append(d)
return int(np.percentile(values, 50))
def sliding_window_median(pairs):
pairs.sort(key=timestamp)
result = []
win_size = 3
window = []
for i in range(len(pairs)):
window.append(pairs[i])
if len(window) == win_size:
per = per_func(window)
result.append((i, per))
window.pop(0)
else:
result.append((i, -1))
return result
# per_w = []
# count = 0
# for i in range(len(pairs)):
# per_w.append(per_func(pairs[i:i+win_size]))
# if len(per_w) >= win_size:
# result.append((i, per_w[i-count]))
# else:
# result.append((i, -1))
# count += 1
# return result
# for i in range(len(pairs)):
# timestamp = pairs[i][0]
# window = []
# for j in range(max(0, i-2), i+1):
# window.append(pairs[j][1])
# if len(window) == win_size:
# median = int(np.percentile(window, 50))
# else:
# median = -1
# result.append((timestamp, median))
# return result
pairs = [(0, 60), (1, 70), (2, 80), (3, 90), (4, 40), (5, 30)]
print(sliding_window_median(pairs))