forked from open-mmlab/mmyolo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
yolov5_m-v61_syncbn_fast_8xb16-300e_coco.py
69 lines (62 loc) · 1.9 KB
/
yolov5_m-v61_syncbn_fast_8xb16-300e_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
_base_ = './yolov5_s-v61_syncbn_fast_8xb16-300e_coco.py'
deepen_factor = 0.67
widen_factor = 0.75
lr_factor = 0.1 # lrf=0.1
affine_scale = 0.9
model = dict(
backbone=dict(
deepen_factor=deepen_factor,
widen_factor=widen_factor,
),
neck=dict(
deepen_factor=deepen_factor,
widen_factor=widen_factor,
),
bbox_head=dict(
head_module=dict(widen_factor=widen_factor),
loss_cls=dict(loss_weight=0.3),
loss_obj=dict(loss_weight=0.7)))
pre_transform = _base_.pre_transform
albu_train_transforms = _base_.albu_train_transforms
img_scale = _base_.img_scale
mosaic_affine_pipeline = [
dict(
type='Mosaic',
img_scale=img_scale,
pad_val=114.0,
pre_transform=pre_transform),
dict(
type='YOLOv5RandomAffine',
max_rotate_degree=0.0,
max_shear_degree=0.0,
scaling_ratio_range=(1 - affine_scale, 1 + affine_scale),
border=(-img_scale[0] // 2, -img_scale[1] // 2),
border_val=(114, 114, 114))
]
# enable mixup
train_pipeline = [
*pre_transform, *mosaic_affine_pipeline,
dict(
type='YOLOv5MixUp',
prob=0.1,
pre_transform=[*pre_transform, *mosaic_affine_pipeline]),
dict(
type='mmdet.Albu',
transforms=albu_train_transforms,
bbox_params=dict(
type='BboxParams',
format='pascal_voc',
label_fields=['gt_bboxes_labels', 'gt_ignore_flags']),
keymap={
'img': 'image',
'gt_bboxes': 'bboxes'
}),
dict(type='YOLOv5HSVRandomAug'),
dict(type='mmdet.RandomFlip', prob=0.5),
dict(
type='mmdet.PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip',
'flip_direction'))
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
default_hooks = dict(param_scheduler=dict(lr_factor=lr_factor))