-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdsfb.py
200 lines (171 loc) · 5.98 KB
/
dsfb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import sys
import heapq
from itertools import count
import time
class PriorityQueue:
def __init__(self):
self._queue = []
self.counter = count()
def put(self, item, priority):
heapq.heappush(self._queue, (priority, next(self.counter), item))
def get(self):
return heapq.heappop(self._queue)[2]
def empty(self):
return len(self._queue) == 0
def __str__(self):
return str(self._queue)
class GraphColor:
def __init__(self, graph, values):
self.graph = graph
self.values = values
self.variables = list(self.graph.keys())
self.domains = {var: list(self.values) for var in self.variables}
self.curr_domains = None
self.search = 0
self.pruning = 0
# Checking consistency
def isConsistent(self, var, color):
self.load_domain()
for neigh in self.graph[var]:
if color == self.curr_domains[neigh]:
return False
return True
def isConsistentPlain(self, var, color, assign):
for neigh in self.graph[var]:
if neigh in assign:
if color == assign[neigh]:
return False
return True
# Checking constraint satisfaction for arc consistency
def isconstraint(self, X, x, Y, y):
return x != y
def select_unassign_variable(self, assign):
if len(assign) == 0:
return self.variables[0]
for i in self.variables:
if i not in assign:
return i
# Minimum remaining variable
def select_unassigned_variable(self, assign):
self.load_domain()
unassign = [v for v in self.variables if v not in assign]
min = 9999999
for key in unassign:
if min > len(self.curr_domains[key]):
min = len(self.curr_domains[key])
v = key
return v
# Least constraining values
def order_domain_values(self, assign, var):
self.load_domain()
lis = []
res = []
queue = PriorityQueue()
for neigh in self.graph[var]:
lis.append(self.curr_domains[neigh])
k = sum([], lis)
for val in self.curr_domains[var]:
c = 0
for i in k:
if val == i:
c += 1
queue.put(val, c)
while not queue.empty():
res.append(queue.get())
return res
def load_domain(self):
if self.curr_domains is None:
self.curr_domains = {v: list(self.domains[v]) for v in self.variables}
# List to maintain the (variable, value) that are removed for a specific variable
def remove(self, var, value):
self.load_domain()
rem = [(var, a) for a in self.curr_domains[var] if a != value]
self.curr_domains[var] = [value]
return rem
# Restore the removal list
def restore(self, rem):
for var, color in rem:
self.curr_domains[var].append(color)
# Removing arc inconsistencies
def remove_inconsistent_values(self, xi, xj, rem):
removed = False
for x in self.curr_domains[xi]:
if all(not self.isconstraint(xi, x, xj, y) for y in self.curr_domains[xj]):
self.curr_domains[xi].remove(x)
if rem is not None:
rem.append((xi, x))
removed = True
return removed
# Arc consistency code
def ac3(self, rem):
queue = [(a, b) for a in self.variables for b in self.graph[a]]
while len(queue) != 0:
(xi, xj) = queue.pop()
if self.remove_inconsistent_values(xi, xj, rem):
self.pruning += 1
for xk in self.graph[xi]:
queue.append((xk, xi))
# DSFB code
def dsfb_plain(self, assign):
if len(assign) == len(self.variables):
return assign
var = self.select_unassign_variable(assign)
for color in self.domains[var]:
if self.isConsistentPlain(var, color, assign):
assign[var] = color
res = self.dsfb_plain(assign)
if res != "fail":
return res
del assign[var]
return "fail"
# DSFB++ code
def dsfb_improved(self, assign):
self.search += 1
if len(assign) == len(self.variables):
print("Search calls are {}".format(self.search))
print("Arc pruning calls are {}".format(self.pruning))
return assign
var = self.select_unassigned_variable(assign)
for color in self.order_domain_values(assign, var):
if self.isConsistent(var, color):
assign[var] = color
rem = self.remove(var, color)
self.ac3(rem)
res = self.dsfb_improved(assign)
if res != "fail":
return res
self.restore(rem)
del assign[var]
return "fail"
if __name__ == '__main__':
in_file = open(sys.argv[1], 'r')
out_file = open(sys.argv[2], 'w')
mode = sys.argv[3]
lis = []
adj = []
graph = {}
for line in in_file.readlines():
lis.append(line.rstrip().split())
for i in range(0,int(lis[0][0])):
graph[i] = []
# Constructing adjacency list of the given input
for edge in lis[1:]:
graph[int(edge[0])].append(int(edge[1]))
graph[int(edge[1])].append(int(edge[0]))
val = range(int(lis[0][2]))
assignment = {}
g = GraphColor(graph, val)
if mode == '0':
t = time.time()
asgn = g.dsfb_plain(assignment)
print("Time taken: {} ms".format((time.time() - t)*1000))
else:
t = time.time()
asgn = g.dsfb_improved(assignment)
print("Time taken: {} ms".format((time.time() - t)*1000))
if asgn == "fail":
print("No Answer")
out_file.write("No Answer")
else:
for i in list(asgn.values()):
out_file.write(str(i) + "\n")