-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathML_classifiers.py
183 lines (143 loc) · 6 KB
/
ML_classifiers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import sys
from sklearn import datasets
from sklearn import svm
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.naive_bayes import MultinomialNB
from sklearn.linear_model import SGDClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.pipeline import Pipeline
from sklearn import metrics
from sklearn.externals import joblib
from nltk.stem import *
from nltk.stem.porter import *
if __name__ == '__main__':
#train_file = open(sys.argv[1], 'r')
#test_file = open(sys.argv[2], 'r')
sizes = []
f1_scores_nb = []
f1_scores_svm = []
f1_scores_lr = []
f1_scores_rf = []
train_data = datasets.load_files("Selected 20NewsGroup/Training",decode_error='ignore',encoding='utf-8',shuffle=True)
test_data = datasets.load_files("Selected 20NewsGroup/Test",decode_error='ignore',encoding='utf-8')
docs_test = test_data.data
# Removing header
for i in range(len(train_data.data)):
train_data.data[i] = "\n".join(train_data.data[i].split("\n")[3:])
# Extracting features
count_vect = CountVectorizer()
X_train_counts = count_vect.fit_transform(train_data.data)
tf_transformer = TfidfTransformer(use_idf=False).fit(X_train_counts)
X_train_tf = tf_transformer.transform(X_train_counts)
tfidf_transformer = TfidfTransformer()
X_train_tfidf = tfidf_transformer.fit_transform(X_train_counts)
# Stemming data
stemmer = PorterStemmer()
words = []
st = []
for i in range(len(train_data.data)):
words = train_data.data[i].split(" ")
singles = [stemmer.stem(word) for word in words]
st.append(' '.join(singles))
# Naive Bayes
print("Naive Bayes")
print("\n")
text_clf_nb = Pipeline([('vect', CountVectorizer(stop_words='english')),
('tfidf', TfidfTransformer()),
('clf', MultinomialNB()),
])
text_clf_1 = text_clf_nb.fit(st, train_data.target)
predicted1 = text_clf_1.predict(docs_test)
print(metrics.classification_report(test_data.target, predicted1, target_names=test_data.target_names))
# SVM Classifier
print("SVM Classifier")
print("\n")
text_clf_svm = Pipeline([('vect', CountVectorizer(stop_words='english')),
('tfidf', TfidfTransformer()),
('clf', SGDClassifier(loss='hinge',penalty='l2'))
])
text_clf_2 = text_clf_svm.fit(st, train_data.target)
predicted2 = text_clf_2.predict(docs_test)
#svm.SVC(kernel='rbf')
print(metrics.classification_report(test_data.target, predicted2, target_names=test_data.target_names))
#Logistic Regression
print("Logistic Regression")
print("\n")
text_clf_lr = Pipeline([('vect', CountVectorizer(stop_words='english')),
('tfidf', TfidfTransformer()),
('clf', LogisticRegression()),
])
text_clf_3 = text_clf_lr.fit(st, train_data.target)
predicted3 = text_clf_3.predict(docs_test)
print(metrics.classification_report(test_data.target, predicted3, target_names=test_data.target_names))
#Random Forest
print("Random Forest")
print("\n")
text_clf_rf = Pipeline([('vect', CountVectorizer(stop_words='english')),
('tfidf', TfidfTransformer()),
('clf', RandomForestClassifier()),
])
text_clf_4 = text_clf_rf.fit(st, train_data.target)
predicted4 = text_clf_4.predict(docs_test)
print(metrics.classification_report(test_data.target, predicted4, target_names=test_data.target_names))
# Splitting Training size
size1 = 0.2 * len(train_data.data)
sizes.append(size1)
size2 = 0.4 * len(train_data.data)
sizes.append(size2)
size3 = 0.6 * len(train_data.data)
sizes.append(size3)
size4 = 0.8 * len(train_data.data)
sizes.append(size4)
# Loop for different splits in training sets
for s in sizes:
train = train_data.data[0:int(s)]
train_target = train_data.target[0:int(s)]
#Naive Bayes
text_clf_split_nb = text_clf_nb.fit(train, train_target)
predicted_nb = text_clf_split_nb.predict(docs_test)
f1_scores_nb.append(metrics.f1_score(test_data.target, predicted_nb, average='macro'))
#SVM
text_clf_split_svm = text_clf_svm.fit(train, train_target)
predicted_svm = text_clf_split_svm.predict(docs_test)
f1_scores_svm.append(metrics.f1_score(test_data.target, predicted_svm, average='macro'))
#Logistic Regression
text_clf_split_lr = text_clf_lr.fit(train, train_target)
predicted_lr = text_clf_split_lr.predict(docs_test)
f1_scores_lr.append(metrics.f1_score(test_data.target, predicted_lr, average='macro'))
#Random Forest
text_clf_split_rf = text_clf_rf.fit(train, train_target)
predicted_rf = text_clf_split_rf.predict(docs_test)
f1_scores_rf.append(metrics.f1_score(test_data.target, predicted_rf, average='macro'))
#plt.title("Learning curve for Naive Bayes")
plt.ylabel("F1-scores")
plt.xlabel("Training Sizes")
plt.plot(sizes, f1_scores_nb, label="Naive Bayes")
#plt.title("Learning curve for SVM")
plt.ylabel("F1-scores")
plt.xlabel("Training Sizes")
plt.plot(sizes, f1_scores_svm, label="SVM")
#plt.title("Learning curve for Logistic Regression")
plt.ylabel("F1-scores")
plt.xlabel("Training Sizes")
plt.plot(sizes, f1_scores_lr, label="Logistic Regression")
#plt.title("Learning curve for Random Forest")
plt.ylabel("F1-scores")
plt.xlabel("Training Sizes")
plt.plot(sizes, f1_scores_rf, label="Random Forest")
plt.grid(True)
plt.legend(loc='best')
plt.title("Training Size vs F1-score")
plt.savefig("Legend plots")
plt.close()
#Code to dump and load
#joblib.dump(text_clf_2, 'classifier.pkl')
#classifier = joblib.load('classifier.pkl')
#predicted_temp = classifier.predict(docs_test)
#print("Loading.........")
#print(metrics.classification_report(test_data.target, predicted_temp, target_names=test_data.target_names))