-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_utils.py
168 lines (136 loc) · 5.6 KB
/
train_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import torch
from torch.utils.tensorboard import SummaryWriter
from torch.optim.lr_scheduler import LambdaLR
import torch.nn.functional as F
import math
import time
import os
class TBLog:
"""
Construc tensorboard writer (self.writer).
The tensorboard is saved at os.path.join(tb_dir, file_name).
"""
def __init__(self, tb_dir, file_name):
self.tb_dir = tb_dir
self.writer = SummaryWriter(os.path.join(self.tb_dir, file_name))
def update(self, tb_dict, it, suffix=None):
"""
Args
tb_dict: contains scalar values for updating tensorboard
it: contains information of iteration (int).
suffix: If not None, the update key has the suffix.
"""
if suffix is None:
suffix = ''
for key, value in tb_dict.items():
self.writer.add_scalar(suffix+key, value, it)
class AverageMeter(object):
"""
refer: https://github.com/pytorch/examples/blob/master/imagenet/main.py
"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def get_SGD(net, name='SGD', lr=0.1, momentum=0.9, \
weight_decay=5e-4, nesterov=True, bn_wd_skip=True):
'''
return optimizer (name) in torch.optim.
If bn_wd_skip, the optimizer does not apply
weight decay regularization on parameters in batch normalization.
'''
optim = getattr(torch.optim, name)
decay = []
no_decay = []
for name, param in net.named_parameters():
if ('bn' in name) and bn_wd_skip:
no_decay.append(param)
else:
decay.append(param)
per_param_args = [{'params': decay},
{'params': no_decay, 'weight_decay': 0.0}]
optimizer = optim(per_param_args, lr=lr,
momentum=momentum, weight_decay=weight_decay, nesterov=nesterov)
return optimizer
def get_cosine_schedule_with_warmup(optimizer,
num_training_steps,
num_cycles=7./16.,
num_warmup_steps=0,
last_epoch=-1):
'''
Get cosine scheduler (LambdaLR).
if warmup is needed, set num_warmup_steps (int) > 0.
'''
def _lr_lambda(current_step):
'''
_lr_lambda returns a multiplicative factor given an interger parameter epochs.
Decaying criteria: last_epoch
'''
if current_step < num_warmup_steps:
_lr = float(current_step) / float(max(1, num_warmup_steps))
else:
num_cos_steps = float(current_step - num_warmup_steps)
num_cos_steps = num_cos_steps / float(max(1, num_training_steps - num_warmup_steps))
_lr = max(0.0, math.cos(math.pi * num_cycles * num_cos_steps))
return _lr
return LambdaLR(optimizer, _lr_lambda, last_epoch)
def accuracy(output, target, topk=(1,)):
"""
Computes the accuracy over the k top predictions for the specified values of k
Args
output: logits or probs (num of batch, num of classes)
target: (num of batch, 1) or (num of batch, )
topk: list of returned k
refer: https://github.com/pytorch/examples/blob/master/imagenet/main.py
"""
with torch.no_grad():
maxk = max(topk) #get k in top-k
batch_size = target.size(0) #get batch size of target
# torch.topk(input, k, dim=None, largest=True, sorted=True, out=None)
# return: value, index
_, pred = output.topk(k=maxk, dim=1, largest=True, sorted=True) # pred: [num of batch, k]
pred = pred.t() # pred: [k, num of batch]
#[1, num of batch] -> [k, num_of_batch] : bool
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
#np.shape(res): [k, 1]
return res
def ce_loss(logits, targets, use_hard_labels=True, reduction='none'):
"""
wrapper for cross entropy loss in pytorch.
Args
logits: logit values, shape=[Batch size, # of classes]
targets: integer or vector, shape=[Batch size] or [Batch size, # of classes]
use_hard_labels: If True, targets have [Batch size] shape with int values. If False, the target is vector (default True)
"""
if use_hard_labels:
return F.cross_entropy(logits, targets, reduction=reduction)
else:
assert logits.shape == targets.shape
log_pred = F.log_softmax(logits, dim=-1)
nll_loss = torch.sum(-targets*log_pred, dim=1)
return nll_loss
def param_group(model, weight_decay):
param_group_list = [{'params':[], 'weight_decay':weight_decay},
{'params':[], 'weight_decay':weight_decay, 'momentum': 0.1}]
for m in model.modules():
if isinstance(m, torch.nn.Linear):
param_group_list[0]['params'].append(m.weight)
param_group_list[0]['params'].append(m.bias)
elif isinstance(m, torch.nn.Conv2d):
param_group_list[0]['params'].append(m.weight)
elif isinstance(m, torch.nn.BatchNorm2d):
param_group_list[1]['params'].append(m.weight)
param_group_list[1]['params'].append(m.bias)
return param_group_list