forked from enjoysport2022/ReinforcementLearning_for_stock
-
Notifications
You must be signed in to change notification settings - Fork 0
/
multi_stock_ensemble_strategy.py
225 lines (179 loc) · 10.3 KB
/
multi_stock_ensemble_strategy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import time
import numpy as np
import pandas as pd
from env.MultiStock_train import StockEnvTrain
from env.MultiStock_validation import StockEnvValidation
from env.MultiStock_trade import StockEnvTrade
from stable_baselines3 import PPO, A2C, DDPG
from stable_baselines3.common.noise import OrnsteinUhlenbeckActionNoise
from stable_baselines3.common.vec_env import DummyVecEnv
path = 'data/trading.csv'
df = pd.read_csv(path)
rebalance_window = 63
validation_window = 63
unique_trade_date = df[(df.datadate > 20151001)&(df.datadate <= 20200707)].datadate.unique()
print(unique_trade_date)
def train_A2C(env_train, model_name, timesteps=10): #25000
start = time.time()
model = A2C('MlpPolicy', env_train, verbose=0)
model.learn(total_timesteps=timesteps)
end = time.time()
model.save(f"/Users/poteman/learn/RL/ReinforcementLearning_for_stock/archive/{model_name}")
print(' - Training time (A2C): ', (end - start) / 60, ' minutes')
return model
def train_DDPG(env_train, model_name, timesteps=10): #10000
# add the noise objects for DDPG
n_actions = env_train.action_space.shape[-1]
action_noise = OrnsteinUhlenbeckActionNoise(mean=np.zeros(n_actions), sigma=float(0.5) * np.ones(n_actions))
start = time.time()
model = DDPG('MlpPolicy', env_train, action_noise=action_noise)
model.learn(total_timesteps=timesteps)
end = time.time()
model.save(f"/Users/poteman/learn/RL/ReinforcementLearning_for_stock/archive/{model_name}")
print(' - Training time (DDPG): ', (end-start)/60,' minutes')
return model
def train_PPO(env_train, model_name, timesteps=50):#50000
start = time.time()
model = PPO('MlpPolicy', env_train, ent_coef = 0.005)
model.learn(total_timesteps=timesteps)
end = time.time()
model.save(f"/Users/poteman/learn/RL/ReinforcementLearning_for_stock/archive/{model_name}")
print(' - Training time (PPO): ', (end - start) / 60, ' minutes')
return model
def data_split(df,start,end):
data = df[(df.datadate >= start) & (df.datadate < end)]
data=data.sort_values(['datadate','tic'],ignore_index=True)
data.index = data.datadate.factorize()[0]
return data
def get_validation_sharpe(iteration):
df_total_value = pd.read_csv('/Users/poteman/learn/RL/ReinforcementLearning_for_stock/archive/account_value_validation_{}.csv'.format(iteration), index_col=0)
df_total_value.columns = ['account_value_train']
df_total_value['daily_return'] = df_total_value.pct_change(1)
sharpe = (4 ** 0.5) * df_total_value['daily_return'].mean() / df_total_value['daily_return'].std()
return sharpe
def DRL_prediction(df,
model,
name,
last_state,
iter_num,
unique_trade_date,
rebalance_window,
turbulence_threshold,
initial):
trade_data = data_split(df, start=unique_trade_date[iter_num - rebalance_window], end=unique_trade_date[iter_num])
env_trade = DummyVecEnv([lambda: StockEnvTrade(trade_data,
turbulence_threshold=turbulence_threshold,
initial=initial,
previous_state=last_state,
model_name=name,
iteration=iter_num)])
obs_trade = env_trade.reset()
for i in range(len(trade_data.index.unique())):
action, _states = model.predict(obs_trade)
obs_trade, rewards, dones, info = env_trade.step(action)
if i == (len(trade_data.index.unique()) - 2):
last_state = env_trade.render()
df_last_state = pd.DataFrame({'last_state': last_state})
df_last_state.to_csv('/Users/poteman/learn/RL/ReinforcementLearning_for_stock/archive/last_state_{}_{}.csv'.format(name, i), index=False)
return last_state
def DRL_validation(model, test_data, test_env, test_obs) -> None:
for i in range(len(test_data.index.unique())):
action, _states = model.predict(test_obs)
test_obs, rewards, dones, info = test_env.step(action)
def run_ensemble_strategy(df, unique_trade_date, rebalance_window, validation_window) -> None:
last_state_ensemble = []
ppo_sharpe_list = []
ddpg_sharpe_list = []
a2c_sharpe_list = []
model_use = []
insample_turbulence = df[(df.datadate<20151000) & (df.datadate>=20090000)]
insample_turbulence = insample_turbulence.drop_duplicates(subset=['datadate'])
insample_turbulence_threshold = np.quantile(insample_turbulence.turbulence.values, .90)
start = time.time()
for i in range(rebalance_window + validation_window, len(unique_trade_date), rebalance_window):
if i - rebalance_window - validation_window == 0:
# inital state
initial = True
else:
# previous state
initial = False
# Tuning trubulence index based on historical data
# Turbulence lookback window is one quarter
end_date_index = df.index[df["datadate"] == unique_trade_date[i - rebalance_window - validation_window]].to_list()[-1]
start_date_index = end_date_index - validation_window*30 + 1
historical_turbulence = df.iloc[start_date_index:(end_date_index + 1), :]
historical_turbulence = historical_turbulence.drop_duplicates(subset=['datadate'])
historical_turbulence_mean = np.mean(historical_turbulence.turbulence.values)
if historical_turbulence_mean > insample_turbulence_threshold:
# if the mean of the historical data is greater than the 90% quantile of insample turbulence data
# then we assume that the current market is volatile,
# therefore we set the 90% quantile of insample turbulence data as the turbulence threshold
# meaning the current turbulence can't exceed the 90% quantile of insample turbulence data
turbulence_threshold = insample_turbulence_threshold
else:
# if the mean of the historical data is less than the 90% quantile of insample turbulence data
# then we tune up the turbulence_threshold, meaning we lower the risk
turbulence_threshold = np.quantile(insample_turbulence.turbulence.values, 1)
print("-" * 50)
print(" - Turbulence_threshold: ", turbulence_threshold)
train = data_split(df, start=20090000, end=unique_trade_date[i - rebalance_window - validation_window])
env_train = DummyVecEnv([lambda: StockEnvTrain(train)])
## validation stockenv
validation = data_split(df, start=unique_trade_date[i - rebalance_window - validation_window],
end=unique_trade_date[i - rebalance_window])
env_val = DummyVecEnv([lambda: StockEnvValidation(validation,
turbulence_threshold=turbulence_threshold,
iteration=i)])
obs_val = env_val.reset()
print(" - Model training from: ", 20090000, "to ",
unique_trade_date[i - rebalance_window - validation_window])
print(" - A2C Training")
model_a2c = train_A2C(env_train, model_name="A2C_30k_dow_{}".format(i), timesteps=30)
print(" - A2C Validation from: ", unique_trade_date[i - rebalance_window - validation_window], "to ",
unique_trade_date[i - rebalance_window])
DRL_validation(model=model_a2c, test_data=validation, test_env=env_val, test_obs=obs_val)
sharpe_a2c = get_validation_sharpe(i)
print(" - A2C Sharpe Ratio: ", sharpe_a2c)
print(" - PPO Training")
model_ppo = train_PPO(env_train, model_name="PPO_100k_dow_{}".format(i), timesteps=10)
print(" - PPO Validation from: ", unique_trade_date[i - rebalance_window - validation_window], "to ",
unique_trade_date[i - rebalance_window])
DRL_validation(model=model_ppo, test_data=validation, test_env=env_val, test_obs=obs_val)
sharpe_ppo = get_validation_sharpe(i)
print(" - PPO Sharpe Ratio: ", sharpe_ppo)
print(" - DDPG Training")
model_ddpg = train_DDPG(env_train, model_name="DDPG_10k_dow_{}".format(i), timesteps=10)
print(" - DDPG Validation from: ", unique_trade_date[i - rebalance_window - validation_window], "to ",
unique_trade_date[i - rebalance_window])
DRL_validation(model=model_ddpg, test_data=validation, test_env=env_val, test_obs=obs_val)
sharpe_ddpg = get_validation_sharpe(i)
ppo_sharpe_list.append(sharpe_ppo)
a2c_sharpe_list.append(sharpe_a2c)
ddpg_sharpe_list.append(sharpe_ddpg)
# Model Selection based on sharpe ratio
if (sharpe_ppo >= sharpe_a2c) & (sharpe_ppo >= sharpe_ddpg):
model_ensemble = model_ppo
model_use.append('PPO')
elif (sharpe_a2c > sharpe_ppo) & (sharpe_a2c > sharpe_ddpg):
model_ensemble = model_a2c
model_use.append('A2C')
else:
model_ensemble = model_ddpg
model_use.append('DDPG')
print(" - Trading from: ", unique_trade_date[i - rebalance_window], "to ", unique_trade_date[i])
print("-" * 50)
last_state_ensemble = DRL_prediction(df=df, model=model_ensemble, name="ensemble",
last_state=last_state_ensemble, iter_num=i,
unique_trade_date=unique_trade_date,
rebalance_window=rebalance_window,
turbulence_threshold=turbulence_threshold,
initial=initial)
end = time.time()
print("Ensemble Strategy took: ", (end - start) / 60, " minutes")
run_ensemble_strategy(df=df,
unique_trade_date= unique_trade_date,
rebalance_window = rebalance_window,
validation_window=validation_window)
# Hongyang Yang, Xiao-Yang Liu, Shan Zhong, and Anwar Walid. 2020. Deep Reinforcement Learning for Automated Stock Trading: An Ensemble Strategy.<br>
# In ICAIF ’20: ACM International Conference on AI in Finance, Oct. 15–16, 2020, Manhattan, NY. ACM, New York, NY, USA.
# https://www.kaggle.com/alincijov/stocks-reinforcement-learning-ensemble/notebook