See k2-fsa#1033
./pruned_transducer_stateless7_bbpe
Note: The modeling units are byte level BPEs
The best results I have gotten are:
Vocab size | greedy (dev & test) | modified beam search (dev & test) | |
---|---|---|---|
500 | 6.88 & 6.98 | 6.87 & 6.94 | --epoch 35 --avg 26 |
The training command:
export CUDA_VISIBLE_DEVICES="0,1,2,3"
./pruned_transducer_stateless7_bbpe/train.py \
--world-size 4 \
--start-epoch 1 \
--num-epochs 35 \
--use-fp16 1 \
--max-duration 800 \
--bbpe-model data/lang_bbpe_500/bbpe.model \
--exp-dir pruned_transducer_stateless7_bbpe/exp \
--master-port 12535
The decoding command:
./pruned_transducer_stateless7_bbpe/decode.py \
--epoch 35 \
--avg 26 \
--exp-dir ./pruned_transducer_stateless7_bbpe/exp \
--max-sym-per-frame 1 \
--bpe-model data/lang_bbpe_500/bbpe.model \
--max-duration 2000 \
--decoding-method greedy_search # modified_beam_search
The pretrained model is available at: https://huggingface.co/pkufool/icefall_asr_tal_csasr_pruned_transducer_stateless7_bbpe
Using the codes from this PR k2-fsa#428.
The WERs are
decoding-method | epoch(iter) | avg | dev | test |
---|---|---|---|---|
greedy_search | 30 | 24 | 7.49 | 7.58 |
modified_beam_search | 30 | 24 | 7.33 | 7.38 |
fast_beam_search | 30 | 24 | 7.32 | 7.42 |
greedy_search(use-averaged-model=True) | 30 | 24 | 7.30 | 7.39 |
modified_beam_search(use-averaged-model=True) | 30 | 24 | 7.15 | 7.22 |
fast_beam_search(use-averaged-model=True) | 30 | 24 | 7.18 | 7.27 |
greedy_search | 348000 | 30 | 7.46 | 7.54 |
modified_beam_search | 348000 | 30 | 7.24 | 7.36 |
fast_beam_search | 348000 | 30 | 7.25 | 7.39 |
The results (CER(%) and WER(%)) for Chinese CER and English WER respectivly (zh: Chinese, en: English):
decoding-method | epoch(iter) | avg | dev | dev_zh | dev_en | test | test_zh | test_en |
---|---|---|---|---|---|---|---|---|
greedy_search(use-averaged-model=True) | 30 | 24 | 7.30 | 6.48 | 19.19 | 7.39 | 6.66 | 19.13 |
modified_beam_search(use-averaged-model=True) | 30 | 24 | 7.15 | 6.35 | 18.95 | 7.22 | 6.50 | 18.70 |
fast_beam_search(use-averaged-model=True) | 30 | 24 | 7.18 | 6.39 | 18.90 | 7.27 | 6.55 | 18.77 |
The training command for reproducing is given below:
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5"
./pruned_transducer_stateless5/train.py \
--world-size 6 \
--num-epochs 30 \
--start-epoch 1 \
--exp-dir pruned_transducer_stateless5/exp \
--lang-dir data/lang_char \
--max-duration 90
The tensorboard training log can be found at https://tensorboard.dev/experiment/KaACzXOVR0OM6cy0qbN5hw/#scalars
The decoding command is:
epoch=30
avg=24
use_average_model=True
## greedy search
./pruned_transducer_stateless5/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir pruned_transducer_stateless5/exp \
--lang-dir ./data/lang_char \
--max-duration 800 \
--use-averaged-model $use_average_model
## modified beam search
./pruned_transducer_stateless5/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir pruned_transducer_stateless5/exp \
--lang-dir ./data/lang_char \
--max-duration 800 \
--decoding-method modified_beam_search \
--beam-size 4 \
--use-averaged-model $use_average_model
## fast beam search
./pruned_transducer_stateless5/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir ./pruned_transducer_stateless5/exp \
--lang-dir ./data/lang_char \
--max-duration 1500 \
--decoding-method fast_beam_search \
--beam 4 \
--max-contexts 4 \
--max-states 8 \
--use-averaged-model $use_average_model
A pre-trained model and decoding logs can be found at https://huggingface.co/luomingshuang/icefall_asr_tal-csasr_pruned_transducer_stateless5