-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
executable file
·174 lines (144 loc) · 6.88 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import os
import time
import yaml
import logging
import argparse
import numpy as np
import plotext.plot as plx
import torch
from torch.utils.data import DataLoader
from torch import optim
from skimage.measure import label, regionprops
from data.TestPaper_dataset.testpaperdataset import TestPaper
from dataloader import get_loader
from model.network import Net
from utils.avgmeter import AverageMeter
from utils.misc import reverse_mapping, visulize_mapping, get_boundary_point
def train(args):
# CONFIGS = yaml.load(open(args.config)) # deprecated, please set the configs in parse_args()
# Set device
if torch.cuda.is_available():
os.environ["CUDA_VISIBLE_DEVICES"] = args.device.strip()
device = torch.device("cuda")
else:
device = torch.device("cpu") # Not suggested
# Set save folder & logging config
subfolder = time.strftime("%Y-%m-%d-%H-%M-%S",time.localtime(time.time()))
if not args.save_folder or (not os.path.isdir(args.save_folder)):
print("Warning: Not invalid value of 'save_folder', set as default value: './save_folder'..")
save_folder = "./save_folder"
else:
save_folder = args.save_folder
if not os.path.exists(save_folder):
os.mkdir(save_folder)
save_folder = os.path.join(save_folder,subfolder)
os.mkdir(save_folder)
#TODO:logging
# Load Dataset
trainloader = get_loader(args.train_gtfile,
batch_size=args.batch_size,
num_thread=args.num_workers)
valloader = get_loader(args.val_gtfile,
batch_size=args.batch_size,
num_thread=args.num_workers)
# Init Net
model = Net(numAngle=args.num_angle, numRho=args.num_rho, backbone=args.backbone)
if args.resume:
model.load_state_dict(torch.load(args.resume))
model = torch.nn.DataParallel(model).to(device)
# Optimizer
optimizer = optim.Adam(model.parameters())
# Loss
criterion = torch.nn.CrossEntropyLoss()
losses = AverageMeter()
# Start Training
model.train();iter = 0 # iter id start from 1
for epoch in range(args.max_epoch):
for batch in trainloader:
start = time.time()
iter += 1
img_tensor, gt_tensor = batch
optimizer.zero_grad()
# Forwarding
preds = model(img_tensor)
# Calculate Loss
loss = criterion(preds, gt_tensor)
loss.backward()
optimizer.step()
losses.update(loss.item(), args.batch_size)
if iter%args.show_interval==0:
logging.info(f"Training [{epoch}/{args.max_epoch}][{iter}] Loss:{losses.avg} Time:{time.time()-start:.1f}s")
if iter%args.val_interval==0:
pass
# vallosses = AverageMeter()
# valaccs = AverageMeter()
# valstart = time.time()
# # Start Validating
# for valbatch in enumerate(valloader):
# val_img_tensor, val_label_tensor = valbatch
# # Forwarding
# preds = model(img_tensor)
#
# # Calculate Loss
# loss = criterion(preds, label_tensor)
# vallosses.update(loss.item(), args.val_batch_size)
#
# # Calculate accuracy metrics
# acc = None #TODO
# valaccs.update(acc, args.val_batch_size)
# logging.info(f"Validating: Loss:{vallosses.avg} Acc:{valaccs.avg} Time:{time.time() - valstart:.1f}s")
#
# key_points = model(img_tensor)
# key_points = torch.sigmoid(key_points)
# binary_kmap = key_points.squeeze().cpu().numpy() > args.threshold
# kmap_label = label(binary_kmap, connectivity=1)
# props = regionprops(kmap_label)
# plist = []
# for prop in props:
# plist.append(prop.centroid)
#
# b_points = reverse_mapping(plist, numAngle=args.num_angle, numRho=args.num_rho, size=(400, 400))
# size = (img_tensor.shape[2].item(), img_tensor.shape[3].item())
# scale_w = size[1] / 400
# scale_h = size[0] / 400
# for i in range(len(b_points)):
# y1 = int(np.round(b_points[i][0] * scale_h))
# x1 = int(np.round(b_points[i][1] * scale_w))
# y2 = int(np.round(b_points[i][2] * scale_h))
# x2 = int(np.round(b_points[i][3] * scale_w))
# if x1 == x2:
# angle = -np.pi / 2
# else:
# angle = np.arctan((y1 - y2) / (x1 - x2))
# (x1, y1), (x2, y2) = get_boundary_point(y1, x1, angle, size[0], size[1])
# b_points[i] = (y1, x1, y2, x2)
#
# # # Show current accuracy
# # plx.scatter(x, y, rows= 17, cols = 70)
# # plx.show()
def parse_args():
parser = argparse.ArgumentParser(description='Training Deep Hough Network')
# Training
parser.add_argument('--device', default="0,1", type=str, help='device id(s) for data-parallel during training.')
parser.add_argument('--batch_size', default=6, type=int, help='batch size for training.')
parser.add_argument('--num_workers', default=4, type=int, help='number of workers for training.')
parser.add_argument('--max_epoch', default=800, type=int, help='number of epoches for training.')
parser.add_argument('--base_lr', default=0.001, type=float, help='learning rate at the beginning.')
parser.add_argument('--show_interval', default=50, type=int, help='steps(iters) between two training logging output.')
parser.add_argument('--backbone', default="res2net50", type=str, help='resnet18 | resnet50 | resnet101 | resnext50 | vgg16 | mobilenetv2 | res2net50')
parser.add_argument('--num_angle', default=100, type=int, help='')
parser.add_argument('--num_rho', default=100, type=int, help='')
parser.add_argument('--threshold', default=0.01, type=float, help='')
# Validating
parser.add_argument('--val_batch_size', default=6, type=int, help='batch size for validating')
parser.add_argument('--val_interval', default=200, type=int, help='steps(iters) between two validating phase.')
# Datasets
parser.add_argument('--train_gtfile', default="test/gt.txt", type=str, help='')
parser.add_argument('--val_gtfile', default="", type=str, help='')
# Miscs
# parser.add_argument('--config', default="./config.yml", help="default configs")
parser.add_argument('--save_folder', default="./save_folder", type=str, help='')
return parser.parse_args()
if __name__ == '__main__':
args = parse_args()
train(args)