-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
137 lines (104 loc) · 4.12 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import torch
import torch.nn as nn
import torch.nn.functional as F
import pickle, time
import pandas as pd
import numpy as np
import argparse
from models.gpt import GPTLanguageModel
from models.llama import Llama
device = 'cuda' if torch.cuda.is_available() else 'cpu'
parser = argparse.ArgumentParser()
parser.add_argument("--file", default='sherlock.txt', type=str, help='the text file to train the model on (default is sherlock.txt)')
parser.add_argument("--model", default='gpt', type=str, help='select a model: gpt(default), llama')
batch_size = 32
epochs = 1000
learning_rate = 3e-4
log_interval = 100
n_embd = 384
n_heads = 8
n_layers = 4
dropout = 0.2
context_window = 16
d_model = 512
args = parser.parse_args()
with open(args.file, 'r', encoding='utf-8') as f:
text = f.read().lower()
chars = sorted(list(set(text)))
stoi = {ch:i for i, ch in enumerate(chars)}
itos = {i:ch for i, ch in enumerate(chars)}
def encode(s): return [stoi[c] for c in s]
def decode(l): return ''.join([itos[i] for i in l])
dataset = torch.tensor(encode(text), dtype=torch.int8)
vocab_size = len(chars)
def get_batches(data, split, batch_size, context_window):
train = data[:int(0.8 * len(data))]
val = data[int(0.8 * len(data)):int(0.9 * len(data))]
test = data[int(0.9 * len(data)):]
batch_data = train
if split == 'val': batch_data = val
if split == 'test': batch_data = test
ix = torch.randint(0, batch_data.size(0) - context_window - 1, (batch_size,))
x = torch.stack([batch_data[i:i+context_window] for i in ix]).long()
y = torch.stack([batch_data[i+1:i+context_window+1] for i in ix]).long()
return x, y
@torch.inference_mode()
def evaluate_loss(model):
out = {}
model.eval()
for split in ['train', 'val', 'test']:
losses = []
for _ in range(10):
xb, yb = get_batches(dataset, split, batch_size, context_window)
xb, yb = xb.to(device), yb.to(device)
_, loss = model(xb, yb)
losses.append(loss.item())
out[split] = np.mean(losses)
model.train()
return out
def train(model, optimizer, scheduler=None, print_logs=False):
losses = []
start_time = time.time()
for epoch in range(epochs):
optimizer.zero_grad()
xs, ys = get_batches(dataset, 'train', batch_size, context_window)
xs, ys = xs.to(device), ys.to(device)
logits, loss = model(xs, ys)
loss.backward()
optimizer.step()
if scheduler:
scheduler.step()
if epoch % log_interval == 0:
batch_time = time.time() - start_time
x = evaluate_loss(model)
losses += [x]
if print_logs:
print(f"Epoch {epoch} | Val Loss: {x['val']:.3f} | Time {batch_time:.3f} | ETA in seconds {batch_time * (epochs - epoch) / log_interval:.3f}")
start_time = time.time()
if scheduler:
print("lr: ", scheduler.get_lr())
print("Validation Loss: ", losses[-1]['val'])
return pd.DataFrame(losses).plot()
def generate(model, max_new_tokens=1024):
idx = torch.zeros(5, 1).long().to(device)
for _ in range(max_new_tokens):
logits, _ = model(idx[:, -context_window:])
last_time_step_logits = logits[:, -1, :]
p = F.softmax(last_time_step_logits, dim=-1)
idx_next = torch.multinomial(p, num_samples=1)
idx = torch.cat([idx, idx_next], dim=-1)
return [decode(x) for x in idx.tolist()]
if args.model == 'gpt':
model = GPTLanguageModel(vocab_size).to(device)
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
train(model, optimizer)
print(generate(model)[0])
if args.model == 'llama':
model = Llama(vocab_size, d_model, n_layers, n_heads, context_window).to(device)
optimizer = torch.optim.AdamW(model.parameters(), betas=(.9, .95), weight_decay=.1, eps=1e-9, lr=learning_rate)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, 300, eta_min=1e-5)
train(model, optimizer, scheduler)
print(generate(model)[0])
# with open('gpt-model.pkl', 'wb') as f:
# pickle.dump(model, f)
# print('Model Saved!!!')