From 1e5c2678237721685c226e999ffd1db0bfccce5e Mon Sep 17 00:00:00 2001 From: Andrew Westberg Date: Sat, 14 Dec 2024 19:45:32 +0000 Subject: [PATCH] chore(math): replace malachite lib with dashu (#542) --- pallas-math/Cargo.toml | 4 +- pallas-math/src/lib.rs | 2 +- pallas-math/src/math.rs | 4 +- .../src/{math_malachite.rs => math_dashu.rs} | 194 +++++++++--------- 4 files changed, 102 insertions(+), 102 deletions(-) rename pallas-math/src/{math_malachite.rs => math_dashu.rs} (81%) diff --git a/pallas-math/Cargo.toml b/pallas-math/Cargo.toml index a188924d..cb476119 100644 --- a/pallas-math/Cargo.toml +++ b/pallas-math/Cargo.toml @@ -12,8 +12,8 @@ authors = ["Andrew Westberg "] exclude = ["tests/data/*"] [dependencies] -malachite = "0.4.16" -malachite-base = "0.4.16" +dashu-int = "0.4.1" +dashu-base = "0.4.1" regex = "1.10.5" thiserror = "1.0.61" diff --git a/pallas-math/src/lib.rs b/pallas-math/src/lib.rs index 0726af4f..bac9cb09 100644 --- a/pallas-math/src/lib.rs +++ b/pallas-math/src/lib.rs @@ -1,2 +1,2 @@ pub mod math; -pub mod math_malachite; +pub mod math_dashu; diff --git a/pallas-math/src/math.rs b/pallas-math/src/math.rs index 6877dde8..369a44ae 100644 --- a/pallas-math/src/math.rs +++ b/pallas-math/src/math.rs @@ -7,7 +7,7 @@ use std::ops::{Div, Mul, Neg, Sub}; use std::sync::LazyLock; use thiserror::Error; -pub type FixedDecimal = crate::math_malachite::Decimal; +pub type FixedDecimal = crate::math_dashu::Decimal; pub static ZERO: LazyLock = LazyLock::new(|| FixedDecimal::from(0u64)); pub static MINUS_ONE: LazyLock = LazyLock::new(|| FixedDecimal::from(-1i64)); @@ -95,7 +95,7 @@ pub struct ExpCmpOrdering { #[cfg(test)] mod tests { use super::*; - use malachite_base::num::arithmetic::traits::Abs; + use dashu_base::Abs; use proptest::prelude::Strategy; use proptest::proptest; use std::fs::File; diff --git a/pallas-math/src/math_malachite.rs b/pallas-math/src/math_dashu.rs similarity index 81% rename from pallas-math/src/math_malachite.rs rename to pallas-math/src/math_dashu.rs index 4d32bfd9..d17c08c6 100644 --- a/pallas-math/src/math_malachite.rs +++ b/pallas-math/src/math_dashu.rs @@ -3,12 +3,8 @@ */ use crate::math::{Error, ExpCmpOrdering, ExpOrdering, FixedPrecision, DEFAULT_PRECISION}; -use malachite::num::arithmetic::traits::{Abs, DivRem, DivRound, Pow, PowAssign}; -use malachite::num::basic::traits::One; -use malachite::platform_64::Limb; -use malachite::rounding_modes::RoundingMode; -use malachite::{Integer, Natural}; -use malachite_base::num::arithmetic::traits::{Parity, Sign}; +use dashu_base::{Abs, DivRem, Sign}; +use dashu_int::{IBig, UBig}; use regex::Regex; use std::cmp::Ordering; use std::fmt::{Display, Formatter}; @@ -19,8 +15,8 @@ use std::sync::LazyLock; #[derive(Debug, Clone)] pub struct Decimal { precision: u64, - precision_multiplier: Integer, - data: Integer, + precision_multiplier: IBig, + data: IBig, } impl PartialEq for Decimal { @@ -59,7 +55,7 @@ impl Display for Decimal { impl From for Decimal { fn from(n: u64) -> Self { let mut result = Decimal::new(DEFAULT_PRECISION); - result.data = Integer::from(n) * &result.precision_multiplier; + result.data = IBig::from(n) * &result.precision_multiplier; result } } @@ -67,50 +63,46 @@ impl From for Decimal { impl From for Decimal { fn from(n: i64) -> Self { let mut result = Decimal::new(DEFAULT_PRECISION); - result.data = Integer::from(n) * &result.precision_multiplier; + result.data = IBig::from(n) * &result.precision_multiplier; result } } -impl From for Decimal { - fn from(n: Integer) -> Self { +impl From for Decimal { + fn from(n: IBig) -> Self { let mut result = Decimal::new(DEFAULT_PRECISION); result.data = n * &result.precision_multiplier; result } } -impl From<&Integer> for Decimal { - fn from(n: &Integer) -> Self { +impl From<&IBig> for Decimal { + fn from(n: &IBig) -> Self { let mut result = Decimal::new(DEFAULT_PRECISION); result.data = n * &result.precision_multiplier; result } } -impl From for Decimal { - fn from(n: Natural) -> Self { +impl From for Decimal { + fn from(n: UBig) -> Self { let mut result = Decimal::new(DEFAULT_PRECISION); - result.data = Integer::from(n) * &result.precision_multiplier; + result.data = IBig::from(n) * &result.precision_multiplier; result } } -impl From<&Natural> for Decimal { - fn from(n: &Natural) -> Self { +impl From<&UBig> for Decimal { + fn from(n: &UBig) -> Self { let mut result = Decimal::new(DEFAULT_PRECISION); - result.data = Integer::from(n) * &result.precision_multiplier; + result.data = IBig::from(n.clone()) * &result.precision_multiplier; result } } impl From<&[u8]> for Decimal { fn from(n: &[u8]) -> Self { - let limbs = n - .chunks(size_of::()) - .map(|chunk| Limb::from_be_bytes(chunk.try_into().expect("Infallible"))) - .collect(); - Decimal::from(Natural::from_owned_limbs_desc(limbs)) + Decimal::from(UBig::from_be_bytes(n)) } } @@ -296,9 +288,9 @@ impl<'a, 'b> AddAssign<&'b Decimal> for &'a mut Decimal { impl FixedPrecision for Decimal { fn new(precision: u64) -> Self { - let mut precision_multiplier = Integer::from(10); - precision_multiplier.pow_assign(precision); - let data = Integer::from(0); + let mut precision_multiplier = IBig::from(10); + precision_multiplier = precision_multiplier.pow(precision as usize); + let data = IBig::from(0); Decimal { precision, precision_multiplier, @@ -315,7 +307,7 @@ impl FixedPrecision for Decimal { } let mut decimal = Decimal::new(precision); - decimal.data = Integer::from_str(s).unwrap(); + decimal.data = IBig::from_str(s).unwrap(); Ok(decimal) } @@ -359,10 +351,10 @@ impl FixedPrecision for Decimal { fn round(&self) -> Self { let mut result = self.clone(); - let half = &self.precision_multiplier / Integer::from(2); + let half = &self.precision_multiplier / IBig::from(2); let remainder = &self.data % &self.precision_multiplier; if (&remainder).abs() >= half { - if self.data.sign() == Ordering::Less { + if self.data.sign() == Sign::Negative { result.data -= &self.precision_multiplier + remainder; } else { result.data += &self.precision_multiplier - remainder; @@ -376,7 +368,7 @@ impl FixedPrecision for Decimal { fn floor(&self) -> Self { let mut result = self.clone(); let remainder = &self.data % &self.precision_multiplier; - if self.data.sign() == Ordering::Less && remainder != 0 { + if self.data.sign() == Sign::Negative && remainder != ZERO.value { result.data -= &self.precision_multiplier; } result.data -= remainder; @@ -386,7 +378,7 @@ impl FixedPrecision for Decimal { fn ceil(&self) -> Self { let mut result = self.clone(); let remainder = &self.data % &self.precision_multiplier; - if self.data.sign() == Ordering::Greater && remainder != 0 { + if self.data.sign() == Sign::Positive && remainder != ZERO.value { result.data += &self.precision_multiplier; } result.data -= remainder; @@ -400,7 +392,7 @@ impl FixedPrecision for Decimal { } } -fn print_fixedp(n: &Integer, precision: &Integer, width: usize) -> String { +fn print_fixedp(n: &IBig, precision: &IBig, width: usize) -> String { let (mut temp_q, mut temp_r) = n.div_rem(precision); let is_negative_q = temp_q < ZERO.value; @@ -430,11 +422,11 @@ fn print_fixedp(n: &Integer, precision: &Integer, width: usize) -> String { } struct Constant { - value: Integer, + value: IBig, } impl Constant { - pub fn new(init: fn() -> Integer) -> Constant { + pub fn new(init: fn() -> IBig) -> Constant { Constant { value: init() } } } @@ -443,24 +435,33 @@ unsafe impl Sync for Constant {} unsafe impl Send for Constant {} static DIGITS_REGEX: LazyLock = LazyLock::new(|| Regex::new(r"^-?\d+$").unwrap()); -static TEN: LazyLock = LazyLock::new(|| Constant::new(|| Integer::from(10))); +static TEN: LazyLock = LazyLock::new(|| Constant::new(|| IBig::from(10))); static PRECISION: LazyLock = LazyLock::new(|| Constant::new(|| TEN.value.clone().pow(34))); static EPS: LazyLock = LazyLock::new(|| Constant::new(|| TEN.value.clone().pow(34 - 24))); static ONE: LazyLock = - LazyLock::new(|| Constant::new(|| Integer::from(1) * &PRECISION.value)); -static ZERO: LazyLock = LazyLock::new(|| Constant::new(|| Integer::from(0))); + LazyLock::new(|| Constant::new(|| IBig::from(1) * &PRECISION.value)); +static ZERO: LazyLock = LazyLock::new(|| Constant::new(|| IBig::from(0))); static E: LazyLock = LazyLock::new(|| { Constant::new(|| { - let mut e = Integer::from(0); + let mut e = IBig::from(0); ref_exp(&mut e, &ONE.value); e }) }); +fn div_round_ceil(x: &IBig, y: &IBig) -> IBig { + let (q, r) = x.div_rem(y); + if q.sign() == Sign::Positive && r != IBig::ZERO { + q + IBig::ONE + } else { + q + } +} + /// Entry point for 'exp' approximation. First does the scaling of 'x' to [0,1] /// and then calls the continued fraction approximation function. -fn ref_exp(rop: &mut Integer, x: &Integer) -> i32 { +fn ref_exp(rop: &mut IBig, x: &IBig) -> i32 { let mut iterations = 0; match x.cmp(&ZERO.value) { Ordering::Equal => { @@ -469,13 +470,13 @@ fn ref_exp(rop: &mut Integer, x: &Integer) -> i32 { } Ordering::Less => { let x_ = -x; - let mut temp = Integer::from(0); + let mut temp = IBig::from(0); iterations = ref_exp(&mut temp, &x_); // rop = 1 / temp div(rop, &ONE.value, &temp); } Ordering::Greater => { - let (n_exponent, _) = x.div_round(&PRECISION.value, RoundingMode::Ceiling); + let n_exponent = div_round_ceil(x, &PRECISION.value); let x_ = x / &n_exponent; iterations = mp_exp_taylor(rop, 1000, &x_, &EPS.value); @@ -490,15 +491,15 @@ fn ref_exp(rop: &mut Integer, x: &Integer) -> i32 { /// Division with quotent and remainder #[inline] -fn div_qr(q: &mut Integer, r: &mut Integer, x: &Integer, y: &Integer) { +fn div_qr(q: &mut IBig, r: &mut IBig, x: &IBig, y: &IBig) { (*q, *r) = x.div_rem(y); } /// Division -pub fn div(rop: &mut Integer, x: &Integer, y: &Integer) { - let mut temp_q = Integer::from(0); - let mut temp_r = Integer::from(0); - let mut temp: Integer; +pub fn div(rop: &mut IBig, x: &IBig, y: &IBig) { + let mut temp_q = IBig::from(0); + let mut temp_r = IBig::from(0); + let mut temp: IBig; div_qr(&mut temp_q, &mut temp_r, x, y); temp = &temp_q * &PRECISION.value; @@ -509,8 +510,9 @@ pub fn div(rop: &mut Integer, x: &Integer, y: &Integer) { temp += &temp_q; *rop = temp; } + /// Taylor / MacLaurin series approximation -fn mp_exp_taylor(rop: &mut Integer, max_n: i32, x: &Integer, epsilon: &Integer) -> i32 { +fn mp_exp_taylor(rop: &mut IBig, max_n: i32, x: &IBig, epsilon: &IBig) -> i32 { let mut divisor = ONE.value.clone(); let mut last_x = ONE.value.clone(); rop.clone_from(&ONE.value); @@ -534,27 +536,27 @@ fn mp_exp_taylor(rop: &mut Integer, max_n: i32, x: &Integer, epsilon: &Integer) n } -pub(crate) fn scale(rop: &mut Integer) { - let mut temp = Integer::from(0); - let mut a = Integer::from(0); +pub(crate) fn scale(rop: &mut IBig) { + let mut temp = IBig::from(0); + let mut a = IBig::from(0); div_qr(&mut a, &mut temp, rop, &PRECISION.value); if *rop < ZERO.value && temp != ZERO.value { - a -= Integer::ONE; + a -= IBig::ONE; } *rop = a; } /// Integer power internal function -fn ipow_(rop: &mut Integer, x: &Integer, n: i64) { +fn ipow_(rop: &mut IBig, x: &IBig, n: i64) { if n == 0 { rop.clone_from(&ONE.value); } else if n % 2 == 0 { - let mut res = Integer::from(0); + let mut res = IBig::from(0); ipow_(&mut res, x, n / 2); *rop = &res * &res; scale(rop); } else { - let mut res = Integer::from(0); + let mut res = IBig::from(0); ipow_(&mut res, x, n - 1); *rop = res * x; scale(rop); @@ -562,9 +564,9 @@ fn ipow_(rop: &mut Integer, x: &Integer, n: i64) { } /// Integer power -fn ipow(rop: &mut Integer, x: &Integer, n: i64) { +fn ipow(rop: &mut IBig, x: &IBig, n: i64) { if n < 0 { - let mut temp = Integer::from(0); + let mut temp = IBig::from(0); ipow_(&mut temp, x, -n); div(rop, &ONE.value, &temp); } else { @@ -576,32 +578,32 @@ fn ipow(rop: &mut Integer, x: &Integer, n: i64) { /// maximum of 'maxN' iterations or until the absolute difference between two /// succeeding convergents is smaller than 'eps'. Assumes 'x' to be within /// [1,e). -fn mp_ln_n(rop: &mut Integer, max_n: i32, x: &Integer, epsilon: &Integer) { - let mut ba: Integer; - let mut aa: Integer; - let mut ab: Integer; - let mut bb: Integer; - let mut a_: Integer; - let mut b_: Integer; - let mut diff: Integer; - let mut convergent: Integer = Integer::from(0); - let mut last: Integer = Integer::from(0); +fn mp_ln_n(rop: &mut IBig, max_n: i32, x: &IBig, epsilon: &IBig) { + let mut ba: IBig; + let mut aa: IBig; + let mut ab: IBig; + let mut bb: IBig; + let mut a_: IBig; + let mut b_: IBig; + let mut diff: IBig; + let mut convergent: IBig = IBig::from(0); + let mut last: IBig = IBig::from(0); let mut first = true; let mut n = 1; - let mut a: Integer; + let mut a: IBig; let mut b = ONE.value.clone(); let mut an_m2 = ONE.value.clone(); - let mut bn_m2 = Integer::from(0); - let mut an_m1 = Integer::from(0); + let mut bn_m2 = IBig::from(0); + let mut an_m1 = IBig::from(0); let mut bn_m1 = ONE.value.clone(); let mut curr_a = 1; while n <= max_n + 2 { let curr_a_2 = curr_a * curr_a; - a = x * Integer::from(curr_a_2); + a = x * IBig::from(curr_a_2); if n > 1 && n % 2 == 1 { curr_a += 1; } @@ -643,9 +645,9 @@ fn mp_ln_n(rop: &mut Integer, max_n: i32, x: &Integer, epsilon: &Integer) { *rop = convergent; } -fn find_e(x: &Integer) -> i64 { - let mut x_: Integer = Integer::from(0); - let mut x__: Integer = E.value.clone(); +fn find_e(x: &IBig) -> i64 { + let mut x_: IBig = IBig::from(0); + let mut x__: IBig = E.value.clone(); div(&mut x_, &ONE.value, &E.value); @@ -678,16 +680,16 @@ fn find_e(x: &Integer) -> i64 { /// Entry point for 'ln' approximation. First does the necessary scaling, and /// then calls the continued fraction calculation. For any value outside the /// domain, i.e., 'x in (-inf,0]', the function returns '-INFINITY'. -fn ref_ln(rop: &mut Integer, x: &Integer) -> bool { - let mut factor = Integer::from(0); - let mut x_ = Integer::from(0); +fn ref_ln(rop: &mut IBig, x: &IBig) -> bool { + let mut factor = IBig::from(0); + let mut x_ = IBig::from(0); if x <= &ZERO.value { return false; } let n = find_e(x); - *rop = Integer::from(n); + *rop = IBig::from(n); *rop = &*rop * &PRECISION.value; ref_exp(&mut factor, rop); @@ -702,9 +704,9 @@ fn ref_ln(rop: &mut Integer, x: &Integer) -> bool { true } -fn ref_pow(rop: &mut Integer, base: &Integer, exponent: &Integer) { +fn ref_pow(rop: &mut IBig, base: &IBig, exponent: &IBig) { /* x^y = exp(y * ln x) */ - let mut tmp: Integer = Integer::from(0); + let mut tmp: IBig = IBig::from(0); if exponent == &ZERO.value || base == &ONE.value { // any base to the power of zero is one, or 1 to any power is 1 @@ -731,13 +733,11 @@ fn ref_pow(rop: &mut Integer, base: &Integer, exponent: &Integer) { debug_assert!(ref_ln); tmp *= exponent; scale(&mut tmp); - let mut tmp_rop = Integer::from(0); + let mut tmp_rop = IBig::from(0); ref_exp(&mut tmp_rop, &tmp); - *rop = if (exponent / &PRECISION.value).even() { - tmp_rop - } else { - -tmp_rop - }; + let (_, rem) = (exponent / &PRECISION.value).div_rem(&IBig::from(2)); + // check if rem is even + *rop = if rem == IBig::ZERO { tmp_rop } else { -tmp_rop }; } else { // base is positive, ref_ln result is valid let ref_ln = ref_ln(&mut tmp, base); @@ -759,20 +759,20 @@ fn ref_pow(rop: &mut Integer, base: &Integer, exponent: &Integer) { /// Lagrange remainder require knowledge of the maximum value to compute the /// maximal error of the remainder. fn ref_exp_cmp( - rop: &mut Integer, + rop: &mut IBig, max_n: u64, - x: &Integer, + x: &IBig, bound_x: i64, - compare: &Integer, + compare: &IBig, ) -> ExpCmpOrdering { rop.clone_from(&ONE.value); let mut n = 0u64; - let mut divisor: Integer; - let mut next_x: Integer; - let mut error: Integer; - let mut upper: Integer; - let mut lower: Integer; - let mut error_term: Integer; + let mut divisor: IBig; + let mut next_x: IBig; + let mut error: IBig; + let mut upper: IBig; + let mut lower: IBig; + let mut error_term: IBig; divisor = ONE.value.clone(); error = x.clone(); @@ -792,7 +792,7 @@ fn ref_exp_cmp( scale(&mut error); let e2 = error.clone(); div(&mut error, &e2, &divisor); - error_term = &error * Integer::from(bound_x); + error_term = &error * IBig::from(bound_x); *rop = &*rop + &next_x; /* compare is guaranteed to be above overall result */