-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest2.pl
263 lines (214 loc) · 4.99 KB
/
test2.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
#!/usr/bin/perl
use 5.010;
use strict;
use warnings;
use Math::GMPz;
use ntheory qw(powmod rootint next_prime);
# [359505020161, 1121414775001, 1682253492481, ]
my $max = 0;
use 5.020;
use strict;
use warnings;
no warnings 'recursion';
use ntheory qw(is_prime);
use experimental qw(signatures);
sub mulmod {
my ($n, $k, $mod) = @_;
ref($mod)
? ((($n % $mod) * $k) % $mod)
: ntheory::mulmod($n, $k, $mod);
}
# Creates the `modulo_test*` subroutines.
foreach my $g (
[1, 1, 4, 29],
[2, 1, 61, 3 * 41 * 17],
#[3, 1, 5, 3],
[4, 1, 53, 10 * 31 * 71],
[5, 1, 23, 43],
) {
no strict 'refs';
*{__PACKAGE__ . '::' . 'modulo_test' . $g->[0]} = sub ($n, $mod) {
my %cache;
sub ($n) {
$n == 0 && return $g->[1];
$n == 1 && return $g->[2];
if (exists $cache{$n}) {
return $cache{$n};
}
my $k = $n >> 1;
#<<<
$cache{$n} = (
$n % 2 == 0
? (mulmod(__SUB__->($k), __SUB__->($k), $mod) - mulmod(mulmod($g->[3], __SUB__->($k - 1), $mod), __SUB__->($k - 1), $mod)) % $mod
: (mulmod(__SUB__->($k), __SUB__->($k + 1), $mod) - mulmod(mulmod($g->[3], __SUB__->($k - 1), $mod), __SUB__->($k), $mod)) % $mod
);
#>>>
}
->($n - 1);
};
}
sub is_probably_prime($n) {
$n <= 1 && return 0;
$n == 2 && return 1;
$n == 3 && return 1;
$n == 11 && return 1;
$n == 13 && return 1;
$n == 17 && return 1;
$n == 59 && return 1;
powmod(2, $n - 1, $n) == 1 or return 0;
my $r5 = modulo_test5($n, $n);
($r5 == 1) or ($r5 == $n - 1) or return 0;
my $r4 = modulo_test4($n, $n);
($r4 == 1) or ($r4 == $n - 1) or return 0;
# my $r3 = modulo_test3($n, $n);
# ($r3 == 1) or ($r3 == $n-1) or return 0;
my $r2 = modulo_test2($n, $n);
($r2 == 1) or ($r2 == $n - 1) or return 0;
my $r1 = modulo_test1($n, $n);
(($n % 4 == 3) ? ($r1 == $n - 1) : ($r1 == 1)) or return 0;
#my $r6 = modulo_test6($n, $n);
#($r6 == 1) or ($r6 == $n-1) or return 0;
}
# Find counter-examples
foreach my $n (1 .. 3000) {
if (is_probably_prime($n)) {
if (not is_prime($n)) {
warn "Counter-examples: $n\n";
}
}
elsif (is_prime($n)) {
warn "Missed a prime: $n\n";
}
}
foreach my $n (
qw(
790623289
530443201
151813201
10024561
1507746241
1825568641
1330655041
5385832561
9294465601
6189121
90698401
888700681
772727356801
459572555521
766015436161
24783645601
61615404001
310449770401
1887933601
30680814529
38069223721
1414273150081
43674868591201
328420730229121
348475822294081
615482316860401
1412368404878881
1489873293627841
484662529
212680023361
262396677543001
1425631483865161
1973944203788899
2518825754955511
4139764902984481
221306864032801
359505020161
1121414775001
1682253492481
24400777040641
38989474716193
40977671331601
46668334332673
54080321943649
106309139227201
195449862688081
224530340357233
240723140898241
320247762202369
372402596837701
443372888629441
596657267497201
712424619363601
1444302789209281
1514208533704777
1961656420426561
1984323150552601
2161556745579001
2256137288796301
2427442746677521
3198224171193481
3448064239362601
3716673343381441
4002924544218601
4025380496726161
5085501271868161
5606301981821641
5819114530600801
39671149333495681
)
) {
say(is_probably_prime(Math::GMPz->new($n)) ? "failed: $n" : "WOW ($n)");
}
say "=========";
my %seen;
my @nums;
while (<>) {
next if /^\h*#/;
my ($n) = (split(' '))[-1];
$n || next;
next if $seen{$n}++;
#say $. if $. % 10000 == 0;
if ($n >= (~0 >> 1)) {
$n = Math::GMPz->new("$n");
}
# push @nums, $n;
is_probably_prime($n) && warn "error: $n\n";
#ntheory::is_prime($n) && die "error: $n\n";
#ntheory::is_aks_prime($n) && die "error: $n\n";
#ntheory::miller_rabin_random($n, 7) && die "error: $n\n";
}
#@nums = sort {$a <=> $b} @nums;
#foreach my $n(@nums) {
# is_probably_prime($n) && warn "error: $n\n";
#}
__END__
Known counter-examples:
359505020161
1121414775001
1682253492481
24400777040641
38989474716193
40977671331601
46668334332673
54080321943649
106309139227201
195449862688081
224530340357233
240723140898241
320247762202369
372402596837701
596657267497201
712424619363601
1444302789209281
1514208533704777
1961656420426561
1984323150552601
2161556745579001
2256137288796301
2427442746677521
3198224171193481
3448064239362601
3716673343381441
4002924544218601
4025380496726161
5085501271868161
5606301981821641
5819114530600801
443372888629441
39671149333495681