-
Notifications
You must be signed in to change notification settings - Fork 0
/
super_poulet_pseudoprimes_from_prime_file.pl
138 lines (101 loc) · 3.85 KB
/
super_poulet_pseudoprimes_from_prime_file.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#!/usr/bin/perl
# Generate Super-Poulet pseudoprimes to base 2, using prime factors bellow a certain limit.
use 5.020;
use warnings;
use experimental qw(signatures);
#use IO::Handle;
use List::Util qw(uniq);
use ntheory qw(:all);
use Math::Prime::Util::GMP;
sub super_poulet_pseudoprimes ($primes, $callback) {
my %common_divisors;
warn ":: Sieving...\n";
foreach my $p (@$primes) {
$p < ~0 or next; # ignore too large primes
#if ($p % 24 == 1 or $p % 24 == 13) {
# if ($p % 24 == 1 or $p % 24 == 13) {
my $z = znorder(2, $p);
# if (2*$z < $limit) {
foreach my $d (divisors($p - 1)) {
#if (powmod(2, $d, $p) == 1) {
if ($d % $z == 0) {
#if ($p > 1e8) {
# if (exists $common_divisors{$d}) {
# push @{$common_divisors{$d}}, $p;
# }
#}
#else {
#my $from = int($limit/$d);
#foreach my $k ($from .. $from + 100) {
#foreach my $k(map{$_->[0]**$_->[1]}factor_exp($p-1)) {
#if (exists($common_divisors{$d}) and scalar(@{$common_divisors{$d}}) >= 5) {
if (exists $common_divisors{$d}) {
foreach my $k (divisors($d)) {
#for (my $k = $from;
#foreach my $k (uniq(factor($p+1))) {
#foreach my $j (3..10) {
my $m = addint($k, int rand 100);
if (($d % 2) * ($m % 2) != 0) {
$m = addint($m, 1);
}
my $q = addint(mulint($d,$m),1);
#~ if (is_prime($q) and $d % znorder(2, $q) == 0) {
#~ push @{$common_divisors{$d}}, $q;
#~ }
#if ((($q % 24 == 1) or ($q % 24 == 13)) and is_prime($q)) {
if (is_prime($q)) {
my $z = znorder(2, $q);
#2*$z < $limit or next;
foreach my $d(divisors(subint($q,1))) {
if (modint($d, $z) == 0 and exists $common_divisors{$d}) {
push @{$common_divisors{$d}}, $q;
}
}
}
}
}
#}
# }
push @{$common_divisors{$d}}, $p;
#}
}
# }
}
# }
# }
}
warn ":: Creating combinations...\n";
#foreach my $arr (values %common_divisors) {
while (my ($key, $arr) = each %common_divisors) {
my $nf = 3; # minimum number of prime factors
$arr = [uniq(@$arr)];
next if @$arr < $nf;
my $l = scalar(@$arr);
#foreach my $k ($nf .. $l) {
for(my $k = $nf; $k <= $l; $k += 2) {
forcomb {
my $n = Math::Prime::Util::GMP::vecprod(@{$arr}[@_]);
$callback->($n);
} $l, $k;
}
}
}
my @primes;
while (<>) {
next if /^#/;
/\d/ or next;
chomp;
push @primes, $_;
}
open my $fh, '>', 'super_poulet_numbers.txt';
#$fh->autoflush(1);
super_poulet_pseudoprimes(
\@primes,
sub ($n) {
if ($n > ~0) { # report only numbers greater than 2^64
warn "$n\n";
say $fh $n;
}
}
);
close $fh;