-
Notifications
You must be signed in to change notification settings - Fork 0
/
exact.pl
106 lines (74 loc) · 3.35 KB
/
exact.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
#!/usr/bin/perl
# Daniel "Trizen" Șuteu
# Date: 25 July 2017
# https://github.com/trizen
# An efficient algorithm for computing sigma_k(n!), where k > 0.
use 5.020;
use strict;
use warnings;
use experimental qw(signatures);
use ntheory qw(forprimes vecsum todigits :all);
use Math::AnyNum qw(ipow factorial);
prime_precalc(3e7);
my $t = Math::GMPz::Rmpz_init();
sub sigma_of_factorial ($n) {
my $sigma = Math::GMPz::Rmpz_init_set_ui(1);
forprimes {
my $p = $_;
my $k = ($n - vecsum(todigits($n, $p))) / ($p - 1);
if (log($p) * ($k + 1) > log(2) * 63) {
#$sigma *= ((ipow($p, ($k + 1)) - 1) / ($p - 1));
Math::GMPz::Rmpz_ui_pow_ui($t, $p, $k + 1);
Math::GMPz::Rmpz_sub_ui($t, $t, 1);
Math::GMPz::Rmpz_divexact_ui($t, $t, $p - 1);
Math::GMPz::Rmpz_mul($sigma, $sigma, $t);
}
else {
#$sigma *= divint(powint($p, $k+1) - 1, $p-1);
Math::GMPz::Rmpz_mul_ui($sigma, $sigma, divint(powint($p, $k + 1) - 1, $p - 1));
}
} $n;
return $sigma;
}
#say sigma_of_factorial(10, 1); # sigma_1(10!) = 15334088
#say sigma_of_factorial(10, 2); # sigma_2(10!) = 20993420690550
#say sigma_of_factorial( 8, 3); # sigma_3( 8!) = 78640578066960
# Least k > 0 such that sigma(k!) >= n*k!.
#my @array = (1, 1, 3, 5, 9, 14, 23, 43, 79, 149, 263, 461, 823, 1451, 2549, 4483, 7879, 13859, 24247, 42683, 75037, 131707, 230773);
my @array = (1, 1, 3, 5, 9, 14, 23, 43, 79, 149, 263, 461, 823, 1451, 2549, 4483, 7879, 13859, 24247, 42683, 75037, 131707, 230773, 405401, 710569, 1246379, 2185021, 3831913, 6720059, 11781551, 20657677);
say "Sanity checking...";
foreach my $n (0 .. $#array) {
my $k = $array[$n];
say "Testing: $k";
my $s = Math::AnyNum->new(sigma_of_factorial($k));
my $t = $n * factorial($k);
$s >= $t or die "error for $k";
next if $k == 1;
my $s2 = Math::AnyNum->new(sigma_of_factorial($k - 1));
my $t2 = $n * factorial($k - 1);
$s2 >= $t2 and die "too large: $k";
}
say "Test passed...";
#say sigma_of_factorial(75037,1);
# 1, 1, 3, 5, 9, 14, 23, 43, 79, 149, 263, 461, 823, 1451, 2549, 4483, 7879, 13859, 24247, 42683, 75037
my $n = 0;
local $| = '1';
my $k = 1;
my $factorial = factorial($k);
$factorial = Math::GMPz->new("$factorial");
for (; $k <= 1e6 ; ++$k) {
while (sigma_of_factorial($k) >= $n * $factorial) {
print($k, ", ");
++$n;
}
$factorial *= ($k + 1);
}
__END__
1, 1, 3, 5, 9, 14, 23, 43, 79, 149, 263, 461, 823, perl r.pl 2.13s user 0.01s system 99% cpu 2.140 total
1, 1, 3, 5, 9, 14, 23, 43, 79, 149, 263, 461, 823, perl r.pl 0.77s user 0.02s system 99% cpu 0.794 total
1, 1, 3, 5, 9, 14, 23, 43, 79, 149, 263, 461, 823, perl r.pl 0.77s user 0.02s system 99% cpu 0.788 total
1, 1, 3, 5, 9, 14, 23, 43, 79, 149, 263, 461, 823, perl r.pl 0.40s user 0.02s system 99% cpu 0.423 total
1, 1, 3, 5, 9, 14, 23, 43, 79, 149, 263, 461, 823, perl r.pl 0.19s user 0.01s system 99% cpu 0.203 total
1, 1, 3, 5, 9, 14, 23, 43, 79, 149, 263, 461, 823, 1451, 2549, 4483, perl r.pl 2.94s user 0.01s system 99% cpu 2.967 total
1, 1, 3, 5, 9, 14, 23, 43, 79, 149, 263, 461, 823, 1451, 2549, 4483, perl r.pl 2.95s user 0.02s system 99% cpu 2.974 total
1, 1, 3, 5, 9, 14, 23, 43, 79, 149, 263, 461, 823, 1451, 2549, 4483, perl r.pl 2.93s user 0.02s system 98% cpu 3.003 total