-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprog.sf
198 lines (150 loc) · 4.41 KB
/
prog.sf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
#!/usr/bin/ruby
# Daniel "Trizen" Șuteu
# Date: 08 March 2019
# https://github.com/trizen
# Partial sums of the inverse Möbius transform of the Dedekind psi function (A001615).
# Definition, for m >= 0:
#
# a(n) = Sum_{k=1..n} Sum_{d|k} ψ_m(d)
# = Sum_{k=1..n} Sum_{d|k} 2^omega(k/d) * d^m
# = Sum_{k=1..n} 2^omega(k) * F_m(floor(n/k))
#
# where `F_n(x)` are the Faulhaber polynomials.
# Asymptotic formula:
# Sum_{k=1..n} Sum_{d|k} ψ_m(d) ~ F_m(n) * (zeta(m+1)^2 / zeta(2*(m+1)))
# ~ (n^(m+1) * zeta(m+1)^2) / ((m+1) * zeta(2*(m+1)))
# For m=1, we have:
# a(n) ~ (5/4) * n^2.
# a(n) = Sum_{k=1..n} A060648(k).
# a(n) = Sum_{k=1..n} Sum_{d|k} 2^omega(k/d) * d.
# a(n) = Sum_{k=1..n} Sum_{d|k} A001615(d).
# a(n) = (1/2)*Sum_{k=1..n} 2^omega(k) * floor(n/k) * floor(1 + n/k).
# Partial sums of A060648.
# See also:
# https://oeis.org/A064608 -- Partial sums of A034444: sum of number of unitary divisors from 1 to n.
# https://oeis.org/A061503 -- Sum_{k<=n} (tau(k^2)), where tau is the number of divisors function.
# a(n) = Sum_{d|n} J_2(d)*mu(n/d)^2, Dirichlet convolution of A007434 and A008966. - Benoit Cloitre, Sep 08 2002
func hello(n, m) {
n.divisors.sum {|d|
moebius(d) * dedekind_psi(n/d, m)
}
}
func bar(n, m) {
n.divisors.sum {|d|
jordan_totient(d, m) * moebius(n/d)**2
}
}
func hello2(n, m) {
# n.divisors.sum {|d|
dedekind_psi(n, m)
# }
}
func bar2(n, m) {
n.divisors.sum {|d|
#2**omega(d) * jordan_totient(n/d, m)
2**omega(d) * euler_phi(n/d)
#moebius(n/d) * d**2 / euler_phi(n)
}
}
# a(n) = Sum_{d|n} 2^omega(d) * phi(n/d), Dirichlet convolution of A034444 and A000010. - ~~~~
__END__
say 20.of { hello(_, 2) }
say 20.of { bar(_, 2) }
say ''
say 20.of { hello2(_, 1) }
say 20.of { bar2(_, 1) }
__END__
func foo (n, m) {
var lookup_size = (2 + 2*n.iroot(3)**2)
var omega_sum_lookup = [0]
for k in (1..lookup_size) {
omega_sum_lookup[k] = (omega_sum_lookup[k-1] + 2**(k.omega))
}
var mu = moebius(0, n.isqrt)
func R(n) { # A064608(n) = Sum_{k=1..n} 2^omega(k)
if (n <= lookup_size) {
return omega_sum_lookup[n]
}
var total = 0
for k in (1..n.isqrt) {
total += mu[k]*(
2*sum(1..floor(isqrt(n / k**2)), {|j|
floor(n / (j * k**2))
}) - floor(isqrt(n / k**2))**2
) if mu[k]
}
return total
}
var s = n.isqrt
var total = 0
for k in (1..s) {
total += (2**omega(k) * faulhaber(floor(n/k), m))
total += (k**m * R(floor(n/k)))
}
total -= R(s)*faulhaber_sum(s, m)
return total
}
func R(n) {
sum(1..n, {|k|
2**omega(k)
})
}
func bar(n, m) {
sum(1..n, {|k|
k**m * R(floor(n/k))
})
}
func baz(n, m) {
sum(1..n, {|k|
k.divisors.sum {|d|
dedekind_psi(d, m)
}
})
}
say 20.of { foo(_, 1) }
say 20.of { bar(_, 0) }
say 20.of { baz(_, 1) }
say 20.of { R(_) }
__END__
func inverse_moebius_of_dedekind_partial_sum_test_1(n, m) {
sum(1..n, {|k|
k.divisors.sum {|d|
d.dedekind_psi(m)
}
})
}
func inverse_moebius_of_dedekind_partial_sum_test_2(n, m) {
sum(1..n, {|k|
k.divisors.sum {|d|
2**omega(k/d) * d**m
}
})
}
func inverse_moebius_of_dedekind_partial_sum_test_3(n, m) {
sum(1..n, {|k|
2**omega(k) * faulhaber(floor(n/k), m)
})
}
for m in (0 .. 10) {
var n = 100.irand
var t1 = inverse_moebius_of_dedekind_partial_sum(n, m)
var t2 = inverse_moebius_of_dedekind_partial_sum_test_1(n, m)
var t3 = inverse_moebius_of_dedekind_partial_sum_test_2(n, m)
var t4 = inverse_moebius_of_dedekind_partial_sum_test_3(n, m)
assert_eq(t1, t2)
assert_eq(t1, t3)
assert_eq(t1, t4)
say "Sum_{k=1..#{n}} Sum_{d|k} ψ_#{m}(d) = #{t1}"
}
__END__
Sum_{k=1..84} Sum_{d|k} ψ_0(d) = 956
Sum_{k=1..87} Sum_{d|k} ψ_1(d) = 9310
Sum_{k=1..61} Sum_{d|k} ψ_2(d) = 109853
Sum_{k=1..35} Sum_{d|k} ψ_3(d) = 458652
Sum_{k=1..47} Sum_{d|k} ψ_4(d) = 51704334
Sum_{k=1..50} Sum_{d|k} ψ_5(d) = 2863258691
Sum_{k=1..40} Sum_{d|k} ψ_6(d) = 25966179432
Sum_{k=1..94} Sum_{d|k} ψ_7(d) = 801529887601705
Sum_{k=1..61} Sum_{d|k} ψ_8(d) = 1402512018638201
Sum_{k=1..78} Sum_{d|k} ψ_9(d) = 889920100633147511
Sum_{k=1..63} Sum_{d|k} ψ_10(d) = 6152021324576989982