-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhcn_between_twin_primes.pl
149 lines (112 loc) · 4.57 KB
/
hcn_between_twin_primes.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
#!/usr/bin/perl
# Daniel "Trizen" Șuteu
# Date: 27 June 2019
# https://github.com/trizen
# Find highly composite numbers H(n) such that H(n)-1 and H(n)+1 are both primes.
# In other words, find highly composite numbers sandwiched between twin primes.
# The sequence of indices of highly composite numbers A002182 which are between a twin prime pair, begins as:
# 3, 4, 5, 9, 11, 12, 20, 28, 30, 84, 108, 118, 143, 149, 208, 330, 362, 1002, 2395, 3160, 10535
# Example:
# H(10535) = A108951(52900585920)
# = 14742217487368791965347653720647452690286549052234444179664342042930370966727413549068727214664401976854238590421417268673037399536054005777393104248210539172848500736334237168727231561710827753972114334247396552090671649834020135652920430241738510495400044737265204738821393451152066370913670083496651044937158497896720493198891148968218874744806522767468280764179516341996273430700779982929787918221844760577694188288275419541410142336911631623319041967633591283303769044016192030492715535641753600000
# where H(10535)-1 and H(10535)+1 are both prime numbers.
# See also:
# https://oeis.org/A321995 -- Indices of highly composite numbers A002182 which are between a twin prime pair.
# https://oeis.org/A108951 -- Completely multiplicative with a(p) = p# for prime p, where x# is the primorial A034386(x).
# https://oeis.org/A002182 -- Highly composite numbers, definition (1): where d(n), the number of divisors of n (A000005), increases to a record.
use 5.020;
use strict;
use warnings;
use Math::GMPz;
use POSIX qw(ULONG_MAX);
use ntheory qw(:all);
use IO::Uncompress::Bunzip2;
use experimental qw(signatures);
local $| = 1;
prime_precalc(1e7);
sub primality_pretest ($n) {
# Must be positive
(Math::GMPz::Rmpz_sgn($n) > 0) || return;
# Check for divisibilty by 2
if (Math::GMPz::Rmpz_even_p($n)) {
return (Math::GMPz::Rmpz_cmp_ui($n, 2) == 0);
}
# Return early if n is too small
Math::GMPz::Rmpz_cmp_ui($n, 101) > 0 or return 1;
# Check for very small factors
if (ULONG_MAX >= 18446744073709551615) {
Math::GMPz::Rmpz_gcd_ui($Math::GMPz::NULL, $n, 16294579238595022365) == 1 or return 0;
Math::GMPz::Rmpz_gcd_ui($Math::GMPz::NULL, $n, 7145393598349078859) == 1 or return 0;
}
else {
Math::GMPz::Rmpz_gcd_ui($Math::GMPz::NULL, $n, 3234846615) == 1 or return 0;
}
# Size of n in base-2
my $size = Math::GMPz::Rmpz_sizeinbase($n, 2);
# When n is large enough, try to find a small factor (up to 10^8)
if ($size > 10_000) {
state %cache;
state $g = Math::GMPz::Rmpz_init_nobless();
my @checks = (1e4);
push(@checks, 1e6) if ($size > 15_000);
push(@checks, 1e7) if ($size > 20_000);
push(@checks, 1e8) if ($size > 30_000);
my $prev;
foreach my $k (@checks) {
my $primorial = (
$cache{$k} //= do {
my $z = Math::GMPz::Rmpz_init_nobless();
Math::GMPz::Rmpz_primorial_ui($z, $k);
Math::GMPz::Rmpz_divexact($z, $z, $prev) if defined($prev);
$z;
}
);
Math::GMPz::Rmpz_gcd($g, $primorial, $n);
if (Math::GMPz::Rmpz_cmp_ui($g, 1) > 0) {
return 0;
}
$prev = $primorial;
}
}
return 1;
}
# "HCN.bz2" was generated by Achim Flammenkamp, and is available at:
# http://wwwhomes.uni-bielefeld.de/achim/HCN.bz2
my $z = IO::Uncompress::Bunzip2->new("HCN.bz2");
my $tmp = Math::GMPz->new(1);
while (defined(my $line = $z->getline())) {
my @fields = split(' ', $line);
my $len = shift(@fields);
if ($len == 0) {
next;
}
my @primes = @{primes(nth_prime($len))};
my $prod = Math::GMPz->new(1);
while (@primes) {
my $k = shift(@fields) // die "error: $line";
my $e = 1;
if ($k =~ /^(\d+)\^(\d+)\z/) {
$k = $1;
$e = $2;
}
for (1 .. $e) {
my $p = shift(@primes);
if ($k == 1) {
Math::GMPz::Rmpz_mul_ui($prod, $prod, $p);
}
elsif ($p**$k < ULONG_MAX) {
Math::GMPz::Rmpz_mul_ui($prod, $prod, powint($p, $k));
}
else {
Math::GMPz::Rmpz_ui_pow_ui($tmp, $p, $k);
Math::GMPz::Rmpz_mul($prod, $prod, $tmp);
}
}
}
if ( primality_pretest($prod - 1)
and primality_pretest($prod + 1)
and is_prob_prime($prod + 1)
and is_prob_prime($prod - 1)) {
print $., ", ";
}
}