-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpuzzle.java
178 lines (150 loc) · 5.29 KB
/
puzzle.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
// Travis Brundage
// 9/16/13
// CAP 5636
// 3x3 Puzzle AI
import java.io.*;
import java.util.*;
public class puzzle {
// Puzzle's dimensions
public static final int N = 3;
public static final int MAX_DEPTH = 31;
public static boolean SPEED;
// Perform a best first search to solve puzzle
public static void BestFirstSearch(State IS, State Goal) {
// Keep track of what states have already been visited
HashMap<State, Integer> closed = new HashMap<State, Integer>();
// Keep track of what states to visit
ArrayList<State> open = new ArrayList<State>();
// Keep track of current state
State current;
// Holds a list of the children
List<State> children;
// Add the initial state
open.add(IS);
int i = 0;
boolean added = false;
// Go through all states until we find the solution
while (!open.isEmpty()) {
// Grab the next state
current = open.remove(0);
// Add it to closed
closed.put(current, current.hval);
// If it's our solution, we're done
if (current.equals(Goal)) {
printAll(current);
System.out.println("Solution found");
return;
}
// Otherwise, generate all the children and add them to the queue
children = current.children(Goal);
for (State c : children) {
if (c.depth <= MAX_DEPTH) { // All puzzles can be solved in 31 moves or less, so don't make more
if (!(closed.containsKey(c))) { // Make sure it's not in closed
if (!(open.contains(c))) { // Make sure it's not in open
i = 0; added = false;
while (i < open.size()) {
if (c.hval < open.get(i).hval) { open.add(i, c); added = true; }
if (added == true) { break; }
i++;
}
if (added != true) { open.add(c); }
}
}
}
}
}
// If we went through all states, there is no solution
System.out.println("No solution");
}
// Modification for speed
// Perform a best first search to solve puzzle
public static void SpeedBestFirstSearch(State IS, State Goal) {
// Keep track of what states have already been visited
HashMap<State, Integer> closed = new HashMap<State, Integer>();
// Keep track of what states to visit
ArrayList<State> open = new ArrayList<State>();
// Keep track of current state
State current;
// Holds a list of the children
List<State> children;
// Add the initial state
open.add(IS);
int i = 0;
boolean added = false;
// Go through all states until we find the solution
while (!open.isEmpty()) {
// Grab the next state
current = open.remove(0);
// Add it to closed
closed.put(current, current.hval);
// If it's our solution, we're done
if (current.equals(Goal)) {
printAll(current);
System.out.println("Solution found");
return;
}
// Otherwise, generate all the children and add them to the queue
children = current.children(Goal);
for (State c : children) {
if (c.depth <= MAX_DEPTH) { // All puzzles can be solved in 31 moves or less, so don't make more
// No sane way to do this formula, essentially this is pruning nodes
if ((c.depth < 23) || (c.depth == 23 && c.hval <= 12) || (c.depth == 24 && c.hval <= 10) || (c.depth == 25 && c.hval <= 8)
|| (c.depth == 26 && c.hval <= 6) || (c.depth == 27 && c.hval <= 6) || (c.depth == 28 && c.hval <= 5) ||
(c.depth == 29 && c.hval <= 4) || (c.depth == 30 && c.hval <= 2) || (c.depth == 31 && c.hval == 0)) {
if (!(closed.containsKey(c))) { // Make sure it's not in closed
if (!(open.contains(c))) { // Make sure it's not in open
i = 0; added = false;
while (i < open.size()) {
if (c.hval < open.get(i).hval) { open.add(i, c); added = true; }
if (added == true) { break; }
i++;
}
if (added != true) { open.add(c); }
}
}
}
}
}
}
// If we went through all states, there is no solution
System.out.println("No solution");
}
// Print all the parents of state s and itself
public static void printAll(State s) {
for (State node : s.parents()) {
node.print();
}
}
public static void main(String[] args) throws IOException {
// Test using pruning --- not 100% sure this works
Scanner stdin = new Scanner(System.in);
System.out.println("Test using tree pruning? Y/N");
String prune = stdin.next();
if (prune.compareTo("Y") == 0) { SPEED = true; System.out.println("Using pruning..."); } else { SPEED = false; }
Scanner fin = new Scanner(new File("puzzle.in"));
int tests = fin.nextInt();
// Input to receive: InitialState and Goal
char[] ISin = new char[N*N];
char[] GOALin = new char[N*N];
String in;
for (int i = 1; i <= tests; i++) {
System.out.println("Test case #" + i + ":");
// For each test case, read in the IS and Goal
for (int j = 0; j < Math.pow(N, 2); j++) {
in = fin.next();
ISin[j] = in.charAt(0);
}
for (int j = 0; j < Math.pow(N, 2); j++) {
in = fin.next();
GOALin[j] = in.charAt(0);
}
// Create the States
State IS = new State(ISin);
State Goal = new State(GOALin);
// Find the shortest path to the goal using Best First Search and Manhattan Distance algorithm heuristic
// If there's a solution, print the path. Otherwise, print no solution.
if (SPEED == true) { SpeedBestFirstSearch(IS, Goal); }
else { BestFirstSearch(IS, Goal); }
}
}
}