Skip to content

Latest commit

 

History

History
141 lines (108 loc) · 5.67 KB

Readme.md

File metadata and controls

141 lines (108 loc) · 5.67 KB

Ethash proof - Command line to calculate ethash (ethereum POW) merkle proof

Ethashproof is a commandline to calculate proof data for an ethash POW, it is used by project SmartPool and a decentralized bridge between Etherum and EOS developed by Kyber Network team.

Features

  1. Calculate merkle root of the ethash dag dataset with given epoch
  2. Calculate merkle proof of the pow (dataset elements and their merkle proofs) given the pow submission with given block header
  3. Generate dag dataset

Installation

  1. Install go1.11.2 (https://golang.org/doc/install#install)
  2. Run export GO111MODULE=on
  3. Run ./build.sh

Usage

ethashproof comes with 3 tools:

  1. cmd/epoch/epoch which calculate merkle root for epochs from [0, 512)
  2. cmd/relayer/relayer which accepts block number to calculate all necessary information in order to prove the block
  3. cmd/cache/cache which calculate cache merkle tree for an epoch

The output

When you run cmd/epoch/epoch, it will print:

  1. Merkle root of the DAG dataset

When you run cmd/relayer/relayer, it will print a json containing following information:

  1. RLP encoding of the block header
  2. Merkle root of the DAG dataset
  3. An array of DAG dataset element arrays (that were used in ethash POW). The array is flatten. (Check DAG data element encoding section)
  4. An array of all merkle proofs for all of the elements above (check Merkle audit proof encoding section)
  5. Length of the proof for a DAG dataset element

note: the first time you run relayer for a blockno corresponding to a new epoch, relayer will take several minutes to generate the DAG dataset and calculate everything as well as preparing the cache in order to improve its performance in next runs. It is recommended to run epoch for future epoches so it can prepare everything beforehand.

Explanations

Merkle tree in ethashproof

In ethashproof, we construct a merkle tree out of ethash DAG dataset in order to get merkle root of the dataset and get merkle proof for any specific dataset element. Each DAG dataset is a sequence of many 128 bytes dataset elements, denoted as:

e0, e1, e2, ..., en

Merkle tree explanation

The merkle tree is constructed in the following way:

  • Step 1: Calculate hash of each element using elementhash function. We would have:
h00, h01, h02, h03, ..., h0n
 |    |    |    |   ...   |
e0,  e1,  e2,  e3,  ..., en

where h01 means hash at level 0, element 1. The hash is 32 bytes.

  • Step 2: In this step, set the working level to 0. calculate h10 = hash(h00, h01), h11 = hash(h02, h03), ... if at the end of the level, there is only one element left, we duplicate it and calculate the hash out of them, eg. h0x = hash(h0x*2, h0x*2)
   h10       h11    ...  h1n/2
  /  \      /  \           /  \
h00, h01, h02, h03, ..., h0n  h0n
 |    |    |    |   ...   |
e0,  e1,  e2,  e3,  ..., en
  • Step 3: Increase working level by 1 and go back to Step 2 until there is only 1 element in the working level. That element is the merkle root.
            merkle root
                .
              .....
            ..........
          ...............
        h20         ...  h2n/4
      /     \          /   |
   h10       h11    ...  h1n/2
  /  \      /  \           /  \
h00, h01, h02, h03, ..., h0n  h0n
 |    |    |    |   ...   |
e0,  e1,  e2,  e3,  ..., en

Hash function

  1. Given sha256(bytes) => bytes is a function to hash an array of bytes
  2. Hash function for data element(elementhash) elementhash returns 16 bytes hash of the dataset element.
function elementhash(data) => 16bytes {
  h = sha256(conventional(data)) // conventional function is defined in dataset element encoding section
  return last16Bytes(h)
}
  1. Hash function for 2 sibling nodes (hash) hash returns 16 bytes hash of 2 consecutive elements in a working level.
function hash(a, b) => 16bytes {
  h = sha256(zeropadded(a), zeropadded(b)) // where zeropadded function prepend 16 bytes of 0 to its param	  h = sha256(a, b) // where a, b are 32bytes
  return last16Bytes(h)
}

Conventional encoding

To make it easier for ethereum smartcontract to follow the hash calculation, we use a convention to encode DAG dataset element to use in hash function. The encoding is defined as the following pseudo code:

  1. assume the element is abcd where a, b, c, d are 32 bytes word
  2. first = concat(reverse(a), reverse(b)) where reverse reverses the bytes
  3. second = concat(reverse(c), reverse(d))
  4. conventional encoding of abcd is concat(first, second)

Dataset element encoding

In order to make it easy (and gas saving) for ethereum smart contract (the earliest contract we used to verify the proof) to work with the dataset element, ethashproof outputs a DAG dataset element as an array of 32 bytes word, the word is little endian.

Merkle audit proof

Please read more on http://www.certificate-transparency.org/log-proofs-work.

Merkle audit proof encoding

For a DAG dataset element, there is a list of hashes (the proof) to prove its existence. In ethashproof, we dont include dataset element's hash and the merkle root in the proof and format it in the following rules

  1. assume the hashes are: [h0, h1, h2, h3, ..., hn] where hi is 16 bytes.
  2. if n is odd, append a 16 bytes number of 0.
  3. reorder the hashes to: [h1, h0, h3, h2, ...]
  4. concatenate 2 consecutive hashes into one 32 bytes word so that the hashes becomes [h1h0, h3h2, ...]

In the output of ethashproof, all proofs of the elements are included in order in 1 array so that the proof of dataset element 0 will be at the beginning of the array and element n's will be at the end. You will have to determine the boundary of each proof yourself.