@@ -26,6 +26,29 @@ calculate spectral + taxonomic diversity values for assessment of the
26
26
1 . ** Direct the package to the input files** in this case we use a
27
27
drone image from Fowlers Gap, NSW, Australia
28
28
29
+ the example data in this case is 5 bands sampled from a drone
30
+
31
+ ``` r
32
+ create_multiband_image(" inst/extdata/create_multiband_image/" ,c(' blue' , ' green' , ' red' , ' red_edge' , ' nir' ), output_dir = tempdir(),make_plot = TRUE ,return_raster = TRUE )
33
+ ```
34
+
35
+ <img src =" man/figures/README-unnamed-chunk-2-1.png " width =" 100% " />
36
+
37
+ #> class : SpatRaster
38
+ #> dimensions : 1466, 1466, 5 (nrow, ncol, nlyr)
39
+ #> resolution : 0.01519, 0.01519 (x, y)
40
+ #> extent : 566521.2, 566543.5, 6561293, 6561316 (xmin, xmax, ymin, ymax)
41
+ #> coord. ref. : WGS 84 / UTM zone 54S (EPSG:32754)
42
+ #> sources : blue.tif
43
+ #> green.tif
44
+ #> red_edge.tif
45
+ #> ... and 2 more source(s)
46
+ #> names : blue, green, red, red_edge, nir
47
+ #> min values : 0.01265331, 0.01101853, 0.01276734, 0.01221969, 0.01856168
48
+ #> max values : 0.23392145, 0.20722562, 0.22469597, 0.17767203, 0.21024320
49
+
50
+ this can be combined with an area of interest mask:
51
+
29
52
``` r
30
53
31
54
raster_files <- list.files(" inst/extdata/example" ,
@@ -56,7 +79,10 @@ head(pixel_values)
56
79
57
80
``` r
58
81
59
- metrics <- calculate_spectral_metrics(pixel_values , masked = F , wavelengths = colnames(pixel_values [, 2 : 6 ]), rarefaction = F )
82
+ metrics <- calculate_spectral_metrics(pixel_values ,
83
+ masked = F ,
84
+ wavelengths = colnames(pixel_values [, 2 : 6 ]),
85
+ rarefaction = F )
60
86
61
87
head(metrics )
62
88
# > site aoi_id CV SV CHV image_type
0 commit comments