-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvalidation.py
68 lines (50 loc) · 2.35 KB
/
validation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import os
import torch
from src import deeplabv3_resnet50
from train_utils import evaluate
from my_dataset import VOCSegmentation
import transforms as T
class SegmentationPresetEval:
def __init__(self, base_size, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)):
self.transforms = T.Compose([
T.RandomResize(base_size, base_size),
T.ToTensor(),
T.Normalize(mean=mean, std=std),
])
def __call__(self, img, target):
return self.transforms(img, target)
def main(args):
device = torch.device(args.device if torch.cuda.is_available() else "cpu")
assert os.path.exists(args.weights), f"weights {args.weights} not found."
# segmentation nun_classes + background
num_classes = args.num_classes + 1
# VOCdevkit -> VOC2012 -> ImageSets -> Segmentation -> val.txt
val_dataset = VOCSegmentation(args.data_path,
year="2012",
transforms=SegmentationPresetEval(520),
txt_name="val.txt")
num_workers = 8
val_loader = torch.utils.data.DataLoader(val_dataset,
batch_size=1,
num_workers=num_workers,
pin_memory=True,
collate_fn=val_dataset.collate_fn)
model = deeplabv3_resnet50(aux=args.aux, num_classes=num_classes)
model.load_state_dict(torch.load(args.weights, map_location=device)['model'])
model.to(device)
confmat = evaluate(model, val_loader, device=device, num_classes=num_classes)
print(confmat)
def parse_args():
import argparse
parser = argparse.ArgumentParser(description="pytorch deeplabv3 validation")
parser.add_argument("--data-path", default="/data/", help="VOCdevkit root")
parser.add_argument("--weights", default="./save_weights/model_29.pth")
parser.add_argument("--num-classes", default=20, type=int)
parser.add_argument("--aux", default=True, type=bool, help="auxilier loss")
parser.add_argument("--device", default="cuda", help="training device")
parser.add_argument('--print-freq', default=10, type=int, help='print frequency')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
main(args)