forked from WZBSocialScienceCenter/germalemma
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprep_eval.py
31 lines (23 loc) · 933 Bytes
/
prep_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
"""
Script that generates "eval_table/eval_table.csv" from text samples in folder "eval_texts". This table is later
used to manually add correct lemmata.
Markus Konrad <[email protected]>, Wissenschaftszentrum Berlin für Sozialforschung
January 2019
"""
import pandas as pd
from tmtoolkit.corpus import Corpus
from tmtoolkit.preprocess import TMPreproc
corpus = Corpus.from_folder('eval_texts')
preproc = TMPreproc(corpus.docs, language='german')
postagged = preproc.tokenize().pos_tag()
postagged = postagged.filter_for_pos({'N', 'V', 'ADJ', 'ADV'})
tok_pos_df = pd.DataFrame()
for doc_id, tok_pos in postagged.tokens_with_pos_tags.items():
tok, pos = zip(*tok_pos)
tok_pos_df = tok_pos_df.append(pd.DataFrame({
'doc_id': doc_id,
'token': tok,
'pos': pos
}), ignore_index=True)
tok_pos_df.drop_duplicates(['token', 'pos'], inplace=True)
tok_pos_df.to_csv('eval_table/eval_table.csv')