-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmap_segmentation_demo_all.py
155 lines (149 loc) · 6.95 KB
/
map_segmentation_demo_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import argparse
from GridMapDecompose import map_handling as mh
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('img_file', help='Path to the map')
parser.add_argument('threshold_type', help='Threshold type')
args = parser.parse_args()
test_map = mh.GridMapHandling()
test_map.load_map_flat_file(args.img_file)
test_map.threshold_map(args.threshold_type)
test_map.fill_gaps(1)
test_map.build_graphs()
test_map.label_map()
test_map.evaluate_segments()
visualisation = {"adjacency matrix": False,
"nodes": False,
"edges": False,
"corners and walls": False,
"corners and walls mbb": True,
"labeled map": True,
"graph and mbb": True}
test_map.show(visualisation)
# test_map.save()
# visualize = [False, False, False, True, True, True, True]
#
# if visualize[0]:
# ################################
# fig, ax = plt.subplots(nrows=1, ncols=1, sharex=True, sharey=True)
# im2 = ax.imshow(test_map.graph.adjacency_matrix)
# divider = make_axes_locatable(ax)
# cax = divider.append_axes("right", size="5%", pad=0.05)
# plt.colorbar(im2, cax=cax)
# if visualize[1]:
# ################################
# fig1, ax1 = plt.subplots(nrows=1, ncols=1, sharex=True, sharey=True)
# min_score = np.nanmin(test_map.graph.adjacency_matrix)
# max_score = np.nanmax(test_map.graph.adjacency_matrix)
# norm = plt.Normalize(min_score, max_score)
# cmap = mpl.cm.ScalarMappable(norm=norm, cmap=mpl.cm.jet)
# cmap.set_array([])
# ax1.imshow(test_map.skeleton, cmap="nipy_spectral")
# for it in range(0, test_map.graph.adjacency_matrix.shape[0]):
# if not test_map.graph.node_labels[it]:
# ax1.plot(test_map.graph.nodes[it]['coordinates'][1], test_map.graph.nodes[it]['coordinates'][0], 'g+')
# else:
# ax1.plot(test_map.graph.nodes[it]['coordinates'][1], test_map.graph.nodes[it]['coordinates'][0], 'r.')
# for it in range(0, test_map.graph.adjacency_matrix.shape[0]):
# for jt in range(it, test_map.graph.adjacency_matrix.shape[0]):
# if not np.isnan(test_map.graph.adjacency_matrix[it, jt]):
# a = test_map.graph.nodes[it]
# b = test_map.graph.nodes[jt]
# a = a['coordinates']
# b = b['coordinates']
# y = [a[0], b[0]]
# x = [a[1], b[1]]
# im = ax1.plot(x, y, color=cm.jet(norm(test_map.graph.adjacency_matrix[it, jt])))
# fig1.subplots_adjust(right=0.8)
# cbar_ax = fig1.add_axes([0.85, 0.15, 0.05, 0.7])
# fig1.colorbar(cmap, cax=cbar_ax)
# ax1.axis('off')
# fig1.tight_layout()
# if visualize[2]:
# #############################
# fig2, ax2 = plt.subplots(nrows=1, ncols=1, sharex=True, sharey=True)
# min_score = np.nanmin(test_map.graph.walls)
# max_score = np.nanmax(test_map.graph.walls)
# norm = plt.Normalize(min_score, max_score)
# cmap = mpl.cm.ScalarMappable(norm=norm, cmap=mpl.cm.jet)
# cmap.set_array([])
# ax2.imshow(test_map.skeleton, cmap="nipy_spectral")
# for it in range(0, test_map.graph.walls.shape[0]):
# for jt in range(it, test_map.graph.walls.shape[0]):
# if not test_map.graph.walls[it, jt] == 0.0:
# a = test_map.graph.nodes[it]
# b = test_map.graph.nodes[jt]
# a = a['coordinates']
# b = b['coordinates']
# y = [a[0], b[0]]
# x = [a[1], b[1]]
# im = ax2.plot(x, y, color=cm.jet(norm(test_map.graph.walls[it, jt])))
# fig2.subplots_adjust(right=0.8)
# cbar_ax = fig2.add_axes([0.85, 0.15, 0.05, 0.7])
# fig2.colorbar(cmap, cax=cbar_ax)
# fig2.tight_layout()
# ax2.axis('off')
#
# if visualize[3]:
# #############################
# fig3, ax3 = plt.subplots(nrows=1, ncols=1, sharex=True, sharey=True)
# ax3.imshow(test_map.skeleton, cmap="nipy_spectral")
# for sg in test_map.graph.C:
# coord = []
# for node_id in sg.node:
# a = test_map.graph.nodes[node_id]
# coord.append(a['coordinates'])
# coord = np.array(coord)
# ax3.plot(coord[:, 1], coord[:, 0], 's', markerfacecolor='none')
# for sg in test_map.graph.W:
# coord = []
# for node_id in sg.node:
# a = test_map.graph.nodes[node_id]
# coord.append(a['coordinates'])
# coord = np.array(coord)
#
# ax3.plot(coord[:, 1], coord[:, 0], '.')
#
# fig3.tight_layout()
# ax3.axis('off')
#
# if visualize[4]:
# #############################
# fig4, ax4 = plt.subplots(nrows=1, ncols=1, sharex=True, sharey=True)
# ax4.imshow(test_map.binary_map, cmap="nipy_spectral")
# for local_segment, local_segment_type in zip(test_map.segments, test_map.segment_type):
# if local_segment_type is 'w':
# ax4.plot(local_segment.minimal_bounding_box[:, 1], local_segment.minimal_bounding_box[:, 0], 'g')
# if local_segment_type is 'f':
# ax4.plot(local_segment.minimal_bounding_box[:, 1], local_segment.minimal_bounding_box[:, 0], 'r')
#
# ax4.axis('off')
#
# if visualize[5]:
# #############################
# fig5, ax5 = plt.subplots(nrows=1, ncols=1, sharex=True, sharey=True)
# ax5.imshow(test_map.labeled_map, cmap="nipy_spectral")
#
# ax5.axis('off')
#
# if visualize[6]:
# #############################
# fig6, ax6 = plt.subplots(nrows=1, ncols=1, sharex=True, sharey=True)
# ax6.imshow(test_map.binary_map, cmap="nipy_spectral")
# for local_segment, local_segment_type in zip(test_map.segments, test_map.segment_type):
# if local_segment_type is 'w':
# ax6.plot(local_segment.minimal_bounding_box[:, 1], local_segment.minimal_bounding_box[:, 0], 'g')
# if local_segment_type is 'f':
# ax6.plot(local_segment.minimal_bounding_box[:, 1], local_segment.minimal_bounding_box[:, 0], 'r')
#
# # quickly find edges
# LU_adjacency_matrix = np.triu(test_map.adjacency_matrix_segments)
# edges = np.column_stack(np.nonzero(LU_adjacency_matrix))
# for edge in edges:
# x = (test_map.segments[edge[0] - 1].center[1], test_map.segments[edge[1] - 1].center[1])
# y = (test_map.segments[edge[0] - 1].center[0], test_map.segments[edge[1] - 1].center[0])
# ax6.plot(x, y, 'b')
#
# ax6.axis('off')
#
# plt.show()