-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathmodels.py
473 lines (344 loc) · 19.4 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
from loss import *
import img_utils
import h5py
from keras import backend as K
from keras.models import Model
from keras.layers import Input, merge, BatchNormalization, Activation
from keras.layers.convolutional import Convolution2D, AveragePooling2D, MaxPooling2D, Deconvolution2D, Cropping2D
from keras.utils.data_utils import get_file
from layers import VGGNormalize, Denormalize, ReflectionPadding2D
# VGG-16 Weights Path
THEANO_WEIGHTS_PATH_NO_TOP = r'https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg16_weights_th_dim_ordering_th_kernels_notop.h5'
TENSORFLOW_WEIGHTS_PATH_NO_TOP = r"https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5"
def pooling_func(x, pooltype):
'''
Pooling function used in VGG
Args:
x: previous layer
pooltype: int, 1 refers to AveragePooling2D. All other values refer to MaxPooling2D
Returns:
'''
if pooltype == 1:
return AveragePooling2D((2, 2), strides=(2, 2))(x)
else:
return MaxPooling2D((2, 2), strides=(2, 2))(x)
class FastStyleNet:
''' Fast Style Network
From the paper Perceptual losses for Real Time Style Transfer (http://arxiv.org/abs/1603.08155)
'''
def __init__(self, img_width=256, img_height=256, kernel_size=3, pool_type=0,
style_weight=5., content_weight=1., tv_weight=1e3, model_width="thin",
model_depth="shallow", save_fastnet_model=None):
'''
Creates a FastStyleNet object which can be used to train, validate or predict networks
This is used to create and manage the internal Keras Model so as to provide easy helper functions.
Args:
img_width: image width (im_rows for Keras)
img_height: image_height (im_cols for Keras)
kernel_size: kernel shape. Only 3x3 is tested for Theano backend. Tensorflow backend is not supported yet.
pool_type: decides Max or Average Pooling. 1 is for AveragePooling, all other values default to MaxPooling
style_weight: weight to style loss (author suggests 10.0)
content_weight: weight to content loss (author suggests 1.0)
tv_weight: weight to total variation loss (paper suggests any value between 1e-4 to 1e-6)
model_width: Can take either "thin" or "wide".
With "thin", the internal nb_filters is 64.
With "wide", the internal nb_filters is 128.
"wide" increases the time required per iteration, but it also boosts training performance
model_depth: Can take either "shallow" or "deep".
With "shallow", creates the original network in the paper.
With "deep", creates one more pooling and deconvolution layer. This improves training
speed and performance, but the style patches become very small.
It is advisable to use --image_size = 512 when using the deeper model.
This requires far more training time (0.65 seconds per iteration), however the results
are far better.
'''
self.img_width = img_width
self.img_height = img_height
self.k = kernel_size
self.pool_type = pool_type
self.content_weight = content_weight
self.style_weight = style_weight
self.tv_weight = tv_weight
self.features = 64 if model_width == "thin" else 128
self.deep_model = False if model_depth == "shallow" else True
self.vgg_style_func = None
self.vgg_content_func = None
self.fastnet_predict_func = None
self.model = None # type: Model
self.model_save_path = save_fastnet_model
def create_model(self, style_name=None, train_mode=False, style_image_path=None, validation_path=None):
'''
Creates the FastNet model which can be used in train mode, predict mode and validation mode.
If train_mode = True, this model appends the VGG model to the end of the FastNet model.
In train mode, it requires style image path to be supplied.
If train_mode = False and validation_path = None, this model is in predict mode.
In predict mode, it requires a style_name to be supplied, whose weights it will try to load.
If validation_path is not None, this model is in validation mode.
In validation mode, it simply loads the weights provided by the validation_path and does not append VGG
Args:
style_name: Used in predict mode, used to load correct weights of the style
train_mode: Used to activate train mode. Default is predict mode.
style_image_path: Path to the style image. Necessary if in train mode.
validation_path: Path to the validation weights that need to be loaded.
Returns: FastNet Model (Prediction mode / Validation mode) or FastNet + VGG Model (Train mode)
'''
if train_mode and style_image_path is None:
raise Exception('Style reference path must be supplied if training mode is enabled')
self.mode = 2
if K.image_dim_ordering() == "th":
ip = Input(shape=(3, self.img_width, self.img_height), name="X_input")
else:
ip = Input(shape=(self.img_width, self.img_height, 3), name="X_input")
c1 = ReflectionPadding2D((4, 4))(ip)
c1 = Convolution2D(32, 9, 9, activation='linear', border_mode='valid', name='conv1')(c1)
c1_b = BatchNormalization(axis=1, mode=self.mode, name="batchnorm1")(c1)
c1_b = Activation('relu')(c1_b)
c2 = Convolution2D(self.features, self.k, self.k, activation='linear', border_mode='same', subsample=(2, 2),
name='conv2')(c1_b)
c2_b = BatchNormalization(axis=1, mode=self.mode, name="batchnorm2")(c2)
c2_b = Activation('relu')(c2_b)
c3 = Convolution2D(self.features, self.k, self.k, activation='linear', border_mode='same', subsample=(2, 2),
name='conv3')(c2_b)
x = BatchNormalization(axis=1, mode=self.mode, name="batchnorm3")(c3)
x = Activation('relu')(x)
if self.deep_model:
c4 = Convolution2D(self.features, self.k, self.k, activation='linear', border_mode='same', subsample=(2, 2),
name='conv4')(x)
x = BatchNormalization(axis=1, mode=self.mode, name="batchnorm_4")(c4)
x = Activation('relu')(x)
r1 = self._residual_block(x, 1)
r2 = self._residual_block(r1, 2)
r3 = self._residual_block(r2, 3)
r4 = self._residual_block(r3, 4)
x = self._residual_block(r4, 5)
if self.deep_model:
d4 = Deconvolution2D(self.features, self.k, self.k, activation="linear", border_mode="same", subsample=(2, 2),
output_shape=(1, self.features, self.img_width // 4, self.img_height // 4),
name="deconv4")(x)
x = BatchNormalization(axis=1, mode=self.mode, name="batchnorm_extra4")(d4)
x = Activation('relu')(x)
d3 = Deconvolution2D(self.features, self.k, self.k, activation="linear", border_mode="same", subsample=(2, 2),
output_shape=(1, self.features, self.img_width // 2, self.img_height // 2),
name="deconv3")(x)
d3 = BatchNormalization(axis=1, mode=self.mode, name="batchnorm4")(d3)
d3 = Activation('relu')(d3)
d2 = Deconvolution2D(self.features, self.k, self.k, activation="linear", border_mode="same", subsample=(2, 2),
output_shape=(1, self.features, self.img_width, self.img_height), name="deconv2")(d3)
d2 = BatchNormalization(axis=1, mode=self.mode, name="batchnorm5")(d2)
d2 = Activation('relu')(d2)
d1 = ReflectionPadding2D((4, 4))(d2)
d1 = Convolution2D(3, 9, 9, activation='tanh', border_mode='valid', name='fastnet_conv')(d1)
# Scale output to range [0, 255] via custom Denormalize layer
d1 = Denormalize(name='fastnet_output')(d1)
model = Model(ip, d1)
if self.model_save_path is not None and self.model is None:
model.save(self.model_save_path, overwrite=True)
self.fastnet_outputs_dict = dict([(layer.name, layer.output) for layer in model.layers])
fastnet_output_layer = model.layers[-1]
if style_name is not None or validation_path is not None:
try:
if validation_path is not None:
path = validation_path
else:
path = "weights/fastnet_%s.h5" % style_name
model.load_weights(path)
print('Fast Style Net weights loaded.')
except:
print('Weights for this style do not exist. Model weights not loaded.')
# Add VGG layers to Fast Style Model
if train_mode:
model = VGG(self.img_height, self.img_width).append_vgg_model(model.input, x_in=model.output,
pool_type=self.pool_type)
if self.model is None:
self.model = model
self.vgg_output_dict = dict([(layer.name, layer.output) for layer in model.layers[-18:]])
vgg_layers = dict([(layer.name, layer) for layer in model.layers[-18:]])
style = img_utils.preprocess_image(style_image_path, self.img_width, self.img_height)
print('Getting style features from VGG network.')
self.style_layers = ['conv1_2', 'conv2_2', 'conv3_3', 'conv4_3']
self.style_layer_outputs = []
for layer in self.style_layers:
self.style_layer_outputs.append(self.vgg_output_dict[layer])
style_features = self.get_vgg_style_features(style)
self.style_features = style_features
# Style Reconstruction Loss
if self.style_weight != 0.0:
for i, layer_name in enumerate(self.style_layers):
layer = vgg_layers[layer_name]
style_loss = StyleReconstructionRegularizer(
style_feature_target=style_features[i][0],
weight=self.style_weight)(layer)
layer.add_loss(style_loss)
# Feature Reconstruction Loss
self.content_layer = 'conv4_2'
self.content_layer_output = self.vgg_output_dict[self.content_layer]
if self.content_weight != 0.0:
layer = vgg_layers[self.content_layer]
content_regularizer = FeatureReconstructionRegularizer(
weight=self.content_weight)(layer)
layer.add_loss(content_regularizer)
# Total Variation Regularization
if self.tv_weight != 0.0:
layer = fastnet_output_layer # Fastnet Output layer
tv_regularizer = TVRegularizer(img_width=self.img_width, img_height=self.img_height,
weight=self.tv_weight)(layer)
layer.add_loss(tv_regularizer)
if self.model is None:
self.model = model
return model
def _residual_block(self, ip, id):
init = ip
x = ReflectionPadding2D()(ip)
x = Convolution2D(128, self.k, self.k, activation='linear', border_mode='valid',
name='res_conv_' + str(id) + '_1')(x)
x = BatchNormalization(axis=1, mode=self.mode, name="res_batchnorm_" + str(id) + "_1")(x)
x = Activation('relu', name="res_activation_" + str(id) + "_1")(x)
x = ReflectionPadding2D()(x)
x = Convolution2D(self.features, self.k, self.k, activation='linear', border_mode='valid',
name='res_conv_' + str(id) + '_2')(x)
x = BatchNormalization(axis=1, mode=self.mode, name="res_batchnorm_" + str(id) + "_2")(x)
m = merge([x, init], mode='sum', name="res_merge_" + str(id))
#m = Activation('relu', name="res_activation_" + str(id))(m)
return m
def fastnet_predict(self, input_img):
'''
Function to get predictions of FastNet model
Args:
input_img: input image of shape determined by image_dim_ordering
Returns: styled (predicted) image
'''
if self.fastnet_predict_func is None:
self.fastnet_predict_func = K.function([self.model.layers[0].input],
self.fastnet_outputs_dict['fastnet_output'])
return self.fastnet_predict_func([input_img])
def get_vgg_style_features(self, input_img):
'''
Function to get style features of VGG model
Args:
input_img: input image of shape determined by image_dim_ordering
Returns: list of VGG output features
'''
if self.vgg_style_func is None:
self.vgg_style_func = K.function([self.model.layers[-19].input], self.style_layer_outputs)
return self.vgg_style_func([input_img])
def get_vgg_content_features(self, input_img):
'''
Function to get content features of VGG model
Args:
input_img: input image of shape determined by image_dim_ordering
Returns: VGG output features
'''
if self.vgg_content_func is None:
self.vgg_content_func = K.function([self.model.layers[-19].input], self.content_layer_output)
return self.vgg_content_func([input_img])
def save_fastnet_weights(self, style_name, directory=None):
'''
Saves the weights of the FastNet model.
It creates a temporary save file having the weights of FastNet + VGG,
loads the weights into just the FastNet model and then deletes the
FastNet + VGG weights.
Args:
style_name: style image name
directory: base directory of saved weights
'''
import os
if directory is not None:
if not os.path.exists(directory):
os.makedirs(directory)
full_weights_fn = directory + "fastnet_full_model_%s.h5" % style_name
else:
full_weights_fn = "fastnet_full_model_%s.h5" % style_name
self.model.save_weights(filepath=full_weights_fn, overwrite=True)
f = h5py.File(full_weights_fn)
layer_names = [name for name in f.attrs['layer_names']]
fastnet_model = self.create_model()
for i, layer in enumerate(fastnet_model.layers):
g = f[layer_names[i]]
weights = [g[name] for name in g.attrs['weight_names']]
layer.set_weights(weights)
if directory is not None:
weights_fn = directory + "fastnet_%s.h5" % style_name
else:
weights_fn = "fastnet_%s.h5" % style_name
fastnet_model.save_weights(weights_fn, overwrite=True)
f.close()
os.remove(full_weights_fn) # The full weights aren't needed anymore since we only need 1 forward pass
# through the fastnet now.
print("Saved fastnet weights for style : %s.h5" % style_name)
class VGG:
'''
Helper class to load VGG and its weights to the FastNet model
'''
def __init__(self, img_height=256, img_width=256):
self.img_height = img_height
self.img_width = img_width
def append_vgg_model(self, model_input, x_in, pool_type=0):
'''
Adds the VGG model to the FastNet model. It concatenates the original input to the output generated
by the FastNet model. This is used to compute output features of VGG for the input image.
Then it rescales the FastNet outputs and initial input to range [-127.5, 127.5] with lambda layer
Ideally, I would like to subtract the channel means individually, but that is not efficient.
Therefore, the closest approximate is to scale the values in the range [-127.5, 127.5]
After this it adds the VGG layers.
Args:
model_input: Input to the FastNet model
x_in: Output of last layer of FastNet model
pool_type: int, 1 = AveragePooling, otherwise uses MaxPooling
Returns: Model (FastNet + VGG)
'''
if K.image_dim_ordering() == "th":
true_X_input = Input(shape=(3, self.img_width, self.img_height))
else:
true_X_input = Input(shape=(self.img_width, self.img_height, 3))
# Append the initial input to the FastNet input to the VGG inputs
x = merge([x_in, true_X_input], mode='concat', concat_axis=0)
# Normalize the inputs via custom VGG Normalization layer
x = VGGNormalize(name="vgg_normalize")(x)
# Begin adding the VGG layers
x = Convolution2D(64, 3, 3, activation='relu', name='conv1_1')(x)
x = Convolution2D(64, 3, 3, activation='relu', name='conv1_2', border_mode='same')(x)
x = pooling_func(x, pool_type)
x = Convolution2D(128, 3, 3, activation='relu', name='conv2_1', border_mode='same')(x)
x = Convolution2D(128, 3, 3, activation='relu', name='conv2_2', border_mode='same')(x)
x = pooling_func(x, pool_type)
x = Convolution2D(256, 3, 3, activation='relu', name='conv3_1', border_mode='same')(x)
x = Convolution2D(256, 3, 3, activation='relu', name='conv3_2', border_mode='same')(x)
x = Convolution2D(256, 3, 3, activation='relu', name='conv3_3', border_mode='same')(x)
x = pooling_func(x, pool_type)
x = Convolution2D(512, 3, 3, activation='relu', name='conv4_1', border_mode='same')(x)
x = Convolution2D(512, 3, 3, activation='relu', name='conv4_2', border_mode='same')(x)
x = Convolution2D(512, 3, 3, activation='relu', name='conv4_3', border_mode='same')(x)
x = pooling_func(x, pool_type)
x = Convolution2D(512, 3, 3, activation='relu', name='conv5_1', border_mode='same')(x)
x = Convolution2D(512, 3, 3, activation='relu', name='conv5_2', border_mode='same')(x)
x = Convolution2D(512, 3, 3, activation='relu', name='conv5_3', border_mode='same')(x)
x = pooling_func(x, pool_type)
model = Model([model_input, true_X_input], x)
# Loading VGG 16 weights
if K.image_dim_ordering() == "th":
weights_name = "vgg16_weights_th_dim_ordering_th_kernels_notop.h5"
weights_path = THEANO_WEIGHTS_PATH_NO_TOP
else:
weights_name = "vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5"
weights_path = TENSORFLOW_WEIGHTS_PATH_NO_TOP
weights = get_file(weights_name, weights_path, cache_subdir='models')
f = h5py.File(weights)
layer_names = [name for name in f.attrs['layer_names']]
for i, layer in enumerate(model.layers[-18:]):
g = f[layer_names[i]]
weights = [g[name] for name in g.attrs['weight_names']]
layer.set_weights(weights)
print('VGG Model weights loaded.')
# Freeze all VGG layers
for layer in model.layers[-19:]:
layer.trainable = False
self.model = model
return model
if __name__ == "__main__":
from keras.utils.visualize_util import plot
net = FastStyleNet()
model = net.create_model(style_image_path=r"D:\Yue\Google Drive\Wallpapers\blue-moon-lake-52859.jpg",
train_mode=False)
model.summary()
print(len(model.layers))
plot(model, 'fastnet.png', show_shapes=True, show_layer_names=True)