Skip to content

Commit ea6dfdf

Browse files
committed
fix(tests/split): Splits the large src/tests.rs into smaller tests
1 parent aa9c78e commit ea6dfdf

23 files changed

+3001
-2842
lines changed

Cargo.lock

Lines changed: 1 addition & 0 deletions
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

Cargo.toml

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -28,6 +28,7 @@ overflow-checks = false
2828
inherits = "release"
2929
opt-level = "z"
3030

31+
3132
[dependencies]
3233
# geometry
3334
nalgebra = "0.33"
@@ -75,6 +76,10 @@ hershey = { version = "0.1.2", optional = true }
7576

7677
doc-image-embed = "0.2.1"
7778

79+
[dependencies.approx]
80+
version = "^0.5"
81+
default-features = false
82+
7883
# wasm
7984
[target.'cfg(any(target_arch = "wasm32", target_arch = "wasm64"))'.dependencies]
8085
getrandom = { version = "0.3", features = ["wasm_js"], optional = true }

src/lib.rs

Lines changed: 0 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -49,6 +49,3 @@ compile_error!("Either 'delaunay' or 'earcut' feature must be specified, but not
4949
not(any(feature = "f64", feature = "f32"))
5050
))]
5151
compile_error!("Either 'f64' or 'f32' feature must be specified, but not both");
52-
53-
#[cfg(test)]
54-
mod tests;

src/mesh/smoothing.rs

Lines changed: 28 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -395,3 +395,31 @@ impl<S: Clone + Debug + Send + Sync> Mesh<S> {
395395
Mesh::from_polygons(&filtered_polygons, self.metadata.clone())
396396
}
397397
}
398+
399+
#[cfg(test)]
400+
mod test {
401+
use nalgebra::Vector3;
402+
403+
use super::*;
404+
405+
#[test]
406+
fn remove_poor_triangles() {
407+
// Create a degenerate case by making a very thin triangle
408+
let vertices = vec![
409+
Vertex::new(Point3::new(0.0, 0.0, 0.0), Vector3::z()),
410+
Vertex::new(Point3::new(1.0, 0.0, 0.0), Vector3::z()),
411+
Vertex::new(Point3::new(0.5, 1e-8, 0.0), Vector3::z()), // Very thin triangle
412+
];
413+
let bad_polygon: Polygon<()> = Polygon::new(vertices, None);
414+
let csg_with_bad = Mesh::from_polygons(&[bad_polygon], None);
415+
416+
// Remove poor quality triangles
417+
let filtered = csg_with_bad.remove_poor_triangles(0.1);
418+
419+
// Should remove the poor quality triangle
420+
assert!(
421+
filtered.polygons.len() <= csg_with_bad.polygons.len(),
422+
"Should remove or maintain triangle count"
423+
);
424+
}
425+
}
Lines changed: 189 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,189 @@
1+
use nalgebra::Point3;
2+
3+
use crate::{float_types::Real, mesh::vertex::Vertex};
4+
5+
impl Vertex {
6+
/// **Mathematical Foundation: Barycentric Linear Interpolation**
7+
///
8+
/// Compute the barycentric linear interpolation between `self` (`t = 0`) and `other` (`t = 1`).
9+
/// This implements the fundamental linear interpolation formula:
10+
///
11+
/// ## **Interpolation Formula**
12+
/// For parameter t ∈ [0,1]:
13+
/// - **Position**: p(t) = (1-t)·p₀ + t·p₁ = p₀ + t·(p₁ - p₀)
14+
/// - **Normal**: n(t) = (1-t)·n₀ + t·n₁ = n₀ + t·(n₁ - n₀)
15+
///
16+
/// ## **Mathematical Properties**
17+
/// - **Affine Combination**: Coefficients sum to 1: (1-t) + t = 1
18+
/// - **Endpoint Preservation**: p(0) = p₀, p(1) = p₁
19+
/// - **Linearity**: Second derivatives are zero (straight line in parameter space)
20+
/// - **Convexity**: Result lies on line segment between endpoints
21+
///
22+
/// ## **Geometric Interpretation**
23+
/// The interpolated vertex represents a point on the edge connecting the two vertices,
24+
/// with both position and normal vectors smoothly blended. This is fundamental for:
25+
/// - **Polygon Splitting**: Creating intersection vertices during BSP operations
26+
/// - **Triangle Subdivision**: Generating midpoints for mesh refinement
27+
/// - **Smooth Shading**: Interpolating normals across polygon edges
28+
///
29+
/// **Note**: Normals are linearly interpolated (not spherically), which is appropriate
30+
/// for most geometric operations but may require renormalization for lighting calculations.
31+
pub fn interpolate(&self, other: &Vertex, t: Real) -> Vertex {
32+
// For positions (Point3): p(t) = p0 + t * (p1 - p0)
33+
let new_pos = self.pos + (other.pos - self.pos) * t;
34+
35+
// For normals (Vector3): n(t) = n0 + t * (n1 - n0)
36+
let new_normal = self.normal + (other.normal - self.normal) * t;
37+
Vertex::new(new_pos, new_normal)
38+
}
39+
40+
/// **Mathematical Foundation: Spherical Linear Interpolation (SLERP) for Normals**
41+
///
42+
/// Compute spherical linear interpolation for normal vectors, preserving unit length:
43+
///
44+
/// ## **SLERP Formula**
45+
/// For unit vectors n₀, n₁ and parameter t ∈ [0,1]:
46+
/// ```text
47+
/// slerp(n₀, n₁, t) = (sin((1-t)·Ω) · n₀ + sin(t·Ω) · n₁) / sin(Ω)
48+
/// ```
49+
/// Where Ω = arccos(n₀ · n₁) is the angle between vectors.
50+
///
51+
/// ## **Mathematical Properties**
52+
/// - **Arc Interpolation**: Follows great circle on unit sphere
53+
/// - **Constant Speed**: Angular velocity is constant
54+
/// - **Unit Preservation**: Result is always unit length
55+
/// - **Orientation**: Shortest path between normals
56+
///
57+
/// This is preferred over linear interpolation for normal vectors in lighting
58+
/// calculations and smooth shading applications.
59+
pub fn slerp_interpolate(&self, other: &Vertex, t: Real) -> Vertex {
60+
// Linear interpolation for position
61+
let new_pos = self.pos + (other.pos - self.pos) * t;
62+
63+
// Spherical linear interpolation for normals
64+
let n0 = self.normal.normalize();
65+
let n1 = other.normal.normalize();
66+
67+
let dot = n0.dot(&n1).clamp(-1.0, 1.0);
68+
69+
// If normals are nearly parallel, use linear interpolation
70+
if (dot.abs() - 1.0).abs() < Real::EPSILON {
71+
let new_normal = (self.normal + (other.normal - self.normal) * t).normalize();
72+
return Vertex::new(new_pos, new_normal);
73+
}
74+
75+
let omega = dot.acos();
76+
let sin_omega = omega.sin();
77+
78+
if sin_omega.abs() < Real::EPSILON {
79+
// Fallback to linear interpolation
80+
let new_normal = (self.normal + (other.normal - self.normal) * t).normalize();
81+
return Vertex::new(new_pos, new_normal);
82+
}
83+
84+
let a = ((1.0 - t) * omega).sin() / sin_omega;
85+
let b = (t * omega).sin() / sin_omega;
86+
87+
let new_normal = (a * n0 + b * n1).normalize();
88+
Vertex::new(new_pos, new_normal)
89+
}
90+
91+
/// **Mathematical Foundation: Barycentric Coordinates Interpolation**
92+
///
93+
/// Interpolate vertex using barycentric coordinates (u, v, w) with u + v + w = 1:
94+
/// ```text
95+
/// p = u·p₁ + v·p₂ + w·p₃
96+
/// n = normalize(u·n₁ + v·n₂ + w·n₃)
97+
/// ```
98+
///
99+
/// This is fundamental for triangle interpolation and surface parameterization.
100+
pub fn barycentric_interpolate(
101+
v1: &Vertex,
102+
v2: &Vertex,
103+
v3: &Vertex,
104+
u: Real,
105+
v: Real,
106+
w: Real,
107+
) -> Vertex {
108+
// Ensure barycentric coordinates sum to 1 (normalize if needed)
109+
let total = u + v + w;
110+
let (u, v, w) = if total.abs() > Real::EPSILON {
111+
(u / total, v / total, w / total)
112+
} else {
113+
(1.0 / 3.0, 1.0 / 3.0, 1.0 / 3.0) // Fallback to centroid
114+
};
115+
116+
let new_pos = Point3::from(u * v1.pos.coords + v * v2.pos.coords + w * v3.pos.coords);
117+
118+
let new_normal = (u * v1.normal + v * v2.normal + w * v3.normal).normalize();
119+
120+
Vertex::new(new_pos, new_normal)
121+
}
122+
}
123+
124+
#[cfg(test)]
125+
mod test {
126+
use nalgebra::{Point3, Vector3};
127+
128+
use crate::mesh::vertex::Vertex;
129+
130+
fn create_vertices() -> [Vertex; 2] {
131+
[
132+
Vertex::new(Point3::new(0.0, 0.0, 0.0), Vector3::x()),
133+
Vertex::new(Point3::new(2.0, 2.0, 2.0), Vector3::y()),
134+
]
135+
}
136+
137+
#[test]
138+
fn linear() {
139+
let [v1, v2] = create_vertices();
140+
141+
// Test linear interpolation
142+
let mid_linear = v1.interpolate(&v2, 0.5);
143+
assert!(
144+
(mid_linear.pos - Point3::new(1.0, 1.0, 1.0)).norm() < 1e-10,
145+
"Linear interpolation midpoint should be (1,1,1)"
146+
);
147+
}
148+
149+
#[test]
150+
fn barycentric() {
151+
let v1 = Vertex::new(Point3::new(0.0, 0.0, 0.0), Vector3::x());
152+
let v2 = Vertex::new(Point3::new(1.0, 0.0, 0.0), Vector3::y());
153+
let v3 = Vertex::new(Point3::new(0.0, 1.0, 0.0), Vector3::z());
154+
155+
// Test centroid (equal weights)
156+
let centroid =
157+
Vertex::barycentric_interpolate(&v1, &v2, &v3, 1.0 / 3.0, 1.0 / 3.0, 1.0 / 3.0);
158+
let expected_pos = Point3::new(1.0 / 3.0, 1.0 / 3.0, 0.0);
159+
assert!(
160+
(centroid.pos - expected_pos).norm() < 1e-10,
161+
"Barycentric centroid should be at (1/3, 1/3, 0)"
162+
);
163+
164+
// Test vertex recovery (weight=1 for one vertex)
165+
let recovered_v1 = Vertex::barycentric_interpolate(&v1, &v2, &v3, 1.0, 0.0, 0.0);
166+
assert!(
167+
(recovered_v1.pos - v1.pos).norm() < 1e-10,
168+
"Barycentric should recover original vertex"
169+
);
170+
}
171+
172+
#[test]
173+
/// Test spherical interpolation
174+
fn slerp() {
175+
let [v1, v2] = create_vertices();
176+
177+
let mid_slerp = v1.slerp_interpolate(&v2, 0.5);
178+
assert!(
179+
(mid_slerp.pos - Point3::new(1.0, 1.0, 1.0)).norm() < 1e-10,
180+
"SLERP position should match linear for positions"
181+
);
182+
183+
// Normal should be normalized and between the two normals
184+
assert!(
185+
(mid_slerp.normal.norm() - 1.0).abs() < 1e-10,
186+
"SLERP normal should be unit length"
187+
);
188+
}
189+
}

0 commit comments

Comments
 (0)