Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

运行HM-16.5_Test_AI\bulid工程出现的问题 #14

Open
zhoushuairan opened this issue Aug 13, 2019 · 16 comments
Open

运行HM-16.5_Test_AI\bulid工程出现的问题 #14

zhoushuairan opened this issue Aug 13, 2019 · 16 comments

Comments

@zhoushuairan
Copy link

zhoushuairan commented Aug 13, 2019

您好,博主
看到您发表的论文之后,决定复现一下具体结果,但是在这过程中遇到一些问题,研究了好久也没弄明白究竟哪里出了错,具体的信息如下,我电脑使用相关软件和配置为vs2015 tensorflow1.10 python3.5我在运行HM-16.5_Test_AI\bulid时候 ,不能出现编码信息。具体运行情况如下:

`Tensor("Conv2D:0", shape=(?, 1, 1, 1), dtype=float32)
Tensor("ResizeNearestNeighbor:0", shape=(?, 16, 16, 1), dtype=float32)
Tensor("LeakyRelu:0", shape=(?, 4, 4, 16), dtype=float32)
Tensor("LeakyRelu_1:0", shape=(?, 2, 2, 24), dtype=float32)
Tensor("LeakyRelu_2:0", shape=(?, 1, 1, 32), dtype=float32)
Tensor("Conv2D_4:0", shape=(?, 2, 2, 1), dtype=float32)
Tensor("ResizeNearestNeighbor_1:0", shape=(?, 32, 32, 1), dtype=float32)
Tensor("LeakyRelu_3:0", shape=(?, 8, 8, 16), dtype=float32)
Tensor("LeakyRelu_4:0", shape=(?, 4, 4, 24), dtype=float32)
Tensor("LeakyRelu_5:0", shape=(?, 2, 2, 32), dtype=float32)
Tensor("Conv2D_8:0", shape=(?, 4, 4, 1), dtype=float32)
Tensor("ResizeNearestNeighbor_2:0", shape=(?, 64, 64, 1), dtype=float32)
Tensor("LeakyRelu_6:0", shape=(?, 16, 16, 16), dtype=float32)
Tensor("LeakyRelu_7:0", shape=(?, 8, 8, 24), dtype=float32)
Tensor("LeakyRelu_8:0", shape=(?, 4, 4, 32), dtype=float32)
Tensor("concat:0", shape=(?, 2688), dtype=float32)
Tensor("cond/Merge:0", shape=(?, 64), dtype=float32)
Tensor("cond_1/Merge:0", shape=(?, 48), dtype=float32)
Tensor("cond_2/Merge:0", shape=(?, 1), dtype=float32)
Tensor("cond_3/Merge:0", shape=(?, 128), dtype=float32)
Tensor("cond_4/Merge:0", shape=(?, 96), dtype=float32)
Tensor("cond_5/Merge:0", shape=(?, 4), dtype=float32)
Tensor("cond_7/Merge:0", shape=(?, 256), dtype=float32)
Tensor("cond_8/Merge:0", shape=(?, 192), dtype=float32)
Tensor("cond_9/Merge:0", shape=(?, 16), dtype=float32)

D:\HM\HM-16.5_Test_AI\bin\vc10\x64\Release\BasketballPass_416x240_50.yuv frame 501/501 416x240
Predicting Time : 7.986 sec.`

HM software: Encoder Version [16.5] (including RExt)[Windows][VS 1900][64 bit]

python video_to_cu_depth.py D:\HM\HM-16.5_Test_AI\bin\vc10\x64\Release\BasketballPass_416x240_50.yuv 416 240 32

Input File : D:\HM\HM-16.5_Test_AI\bin\vc10\x64\Release\BasketballPass_416x240_50.yuv
Bitstream File : str.bin
Reconstruction File : rec.yuv
Real Format : 416x240 50Hz
Internal Format : 416x240 50Hz
Sequence PSNR output : Linear average only
Sequence MSE output : Disabled
Frame MSE output : Disabled
Cabac-zero-word-padding : Enabled
Frame/Field : Frame based coding
Frame index : 0 - 99 (100 frames)
Profile : main
CU size / depth / total-depth : 64 / 4 / 4
RQT trans. size (min / max) : 4 / 32
Max RQT depth inter : 3
Max RQT depth intra : 3
Min PCM size : 8
Motion search range : 64
Intra period : 1
Decoding refresh type : 0
QP : 32.00
Max dQP signaling depth : 0
Cb QP Offset : 0
Cr QP Offset : 0
QP adaptation : 0 (range=0)
GOP size : 1
Input bit depth : (Y:8, C:8)
MSB-extended bit depth : (Y:8, C:8)
Internal bit depth : (Y:8, C:8)
PCM sample bit depth : (Y:8, C:8)
Intra reference smoothing : Enabled
diff_cu_chroma_qp_offset_depth : -1
extended_precision_processing_flag : Disabled
implicit_rdpcm_enabled_flag : Disabled
explicit_rdpcm_enabled_flag : Disabled
transform_skip_rotation_enabled_flag : Disabled
transform_skip_context_enabled_flag : Disabled
cross_component_prediction_enabled_flag: Disabled
high_precision_offsets_enabled_flag : Disabled
persistent_rice_adaptation_enabled_flag: Disabled
cabac_bypass_alignment_enabled_flag : Disabled
log2_sao_offset_scale_luma : 0
log2_sao_offset_scale_chroma : 0
Cost function: : Lossy coding (default)
RateControl : 0
Max Num Merge Candidates : 5

TOOL CFG: IBD:0 HAD:1 RDQ:1 RDQTS:1 RDpenalty:0 SQP:0 ASR:0 FEN:1 ECU:0 FDM:1 CFM:0 ESD:0 RQT:1 TransformSkip:1 TransformSkipFast:1 TransformSkipLog2MaxSize:2 Slice: M=0 SliceSegment: M=0 CIP:0 SAO:1 PCM:0 TransQuantBypassEnabled:0 WPP:0 WPB:0 PME:2 WaveFrontSynchro:0 WaveFrontSubstreams:1 ScalingList:0 TMVPMode:1 AQpS:0 SignBitHidingFlag:1 RecalQP:0

Non-environment-variable-controlled macros set as follows:

                        RExt__DECODER_DEBUG_BIT_STATISTICS =   0
                              RExt__HIGH_BIT_DEPTH_SUPPORT =   0
                    RExt__HIGH_PRECISION_FORWARD_TRANSFORM =   0
                                O0043_BEST_EFFORT_DECODING =   0

           Input ChromaFormatIDC =   4:2:0

Output (internal) ChromaFormatIDC = 4:2:0
请按任意键继续
`
于是我单独运行D:\HM\HM-16.5_Test_AI\bin下文件video_to_cu_depth.py文件 出现
Tensor("Conv2D:0", shape=(?, 1, 1, 1), dtype=float32)
Tensor("ResizeNearestNeighbor:0", shape=(?, 16, 16, 1), dtype=float32)
Tensor("LeakyRelu:0", shape=(?, 4, 4, 16), dtype=float32)
Tensor("LeakyRelu_1:0", shape=(?, 2, 2, 24), dtype=float32)
Tensor("LeakyRelu_2:0", shape=(?, 1, 1, 32), dtype=float32)
Tensor("Conv2D_4:0", shape=(?, 2, 2, 1), dtype=float32)
Tensor("ResizeNearestNeighbor_1:0", shape=(?, 32, 32, 1), dtype=float32)
Tensor("LeakyRelu_3:0", shape=(?, 8, 8, 16), dtype=float32)
Tensor("LeakyRelu_4:0", shape=(?, 4, 4, 24), dtype=float32)
Tensor("LeakyRelu_5:0", shape=(?, 2, 2, 32), dtype=float32)
Tensor("Conv2D_8:0", shape=(?, 4, 4, 1), dtype=float32)
Tensor("ResizeNearestNeighbor_2:0", shape=(?, 64, 64, 1), dtype=float32)
Tensor("LeakyRelu_6:0", shape=(?, 16, 16, 16), dtype=float32)
Tensor("LeakyRelu_7:0", shape=(?, 8, 8, 24), dtype=float32)
Tensor("LeakyRelu_8:0", shape=(?, 4, 4, 32), dtype=float32)
Tensor("concat:0", shape=(?, 2688), dtype=float32)
Tensor("cond/Merge:0", shape=(?, 64), dtype=float32)
Tensor("cond_1/Merge:0", shape=(?, 48), dtype=float32)
Tensor("cond_2/Merge:0", shape=(?, 1), dtype=float32)
Tensor("cond_3/Merge:0", shape=(?, 128), dtype=float32)
Tensor("cond_4/Merge:0", shape=(?, 96), dtype=float32)
Tensor("cond_5/Merge:0", shape=(?, 4), dtype=float32)
Tensor("cond_7/Merge:0", shape=(?, 256), dtype=float32)
Tensor("cond_8/Merge:0", shape=(?, 192), dtype=float32)
Tensor("cond_9/Merge:0", shape=(?, 16), dtype=float32)
File"video_to_cu_depth.py",line 120,in
assert len(sys.argv)==5
AssertionError
请问是为什么呢???如果你能回答 很感谢!

@m10507412
Copy link

上面tensor那些我猜應該是版本問題問你要不要更新吧!
assert len(sys.argv)==5
他要五個參數,不是五個就會錯誤

@zhoushuairan
Copy link
Author

zhoushuairan commented Sep 20, 2019 via email

@m10507412
Copy link

m10507412 commented Sep 24, 2019 via email

@zhoushuairan
Copy link
Author

zhoushuairan commented Oct 10, 2019 via email

@AlexSun0110
Copy link

嗯嗯 谢谢了 前一段时间 我已经把版本换了,并且成功运行了😄😄

                        993649060



                                邮箱:[email protected]

Signature is customized by Netease Mail Master

在2019年09月19日 18:10,m10507412 写道: 上面tensor那些我猜應該是版本問題問你要不要更新吧!
assert len(sys.argv)==5
他要五個參數,不是五個就會錯誤

—You are receiving this because you authored the thread.Reply to this email directly, view it on GitHub, or mute the thread.
[
{
"@context": "http://schema.org",
"@type": "EmailMessage",
"potentialAction": {
"@type": "ViewAction",
"target": "#14?email_source=notifications\u0026email_token=ALZL6DFOQ5NCP36U57U3JA3QKNFZDA5CNFSM4ILG7ST2YY3PNVWWK3TUL52HS4DFVREXG43VMVBW63LNMVXHJKTDN5WW2ZLOORPWSZGOD7C6PGA#issuecomment-533063576",

"url": "#14?email_source=notifications\u0026email_token=ALZL6DFOQ5NCP36U57U3JA3QKNFZDA5CNFSM4ILG7ST2YY3PNVWWK3TUL52HS4DFVREXG43VMVBW63LNMVXHJKTDN5WW2ZLOORPWSZGOD7C6PGA#issuecomment-533063576",
"name": "View Issue"
},
"description": "View this Issue on GitHub",
"publisher": {
"@type": "Organization",
"name": "GitHub",
"url": "https://github.com"
}
}
]

您好!我也出现了assert len(sys.argv)==5的问题,不知道是如何解决的?

@zhoushuairan
Copy link
Author

嗯嗯谢谢了前一次我已经把版本换了,并且成功运行了😄😄

                        993649060



                                邮箱:[email protected]

签名是由网易邮件管理员定制的
在2019年09月19日18:10,m10507412缩小:上面tensor那些我猜应该是版本问题问你要不要更新吧!
assert len(sys.argv)== 5
他要五个参数,不是五个就会错误
—之所以收到此邮件,是因为您编写了该线程。直接回复此电子邮件,在GitHub上查看它,或使该线程静音。
[
{
@context ”:“ http://schema.org”,
@type ”:“ EmailMessage”,
“ potentialAction”:{
@type ”:“ ViewAction”,
“ target”:“ #14?email_source = notifications \ u0026email_token = ALZL6DFOQ5NCP36U57U3JA3QKNFZDA5CNFSM4ILG7ST2YY3PNVWWK3TUL52HS4DFVREXG43VMVBW63LNMVXHJKTDN5WW2ZLOORPWSZGOD7C6PGA#issue-comment-
“URL”: “ #14 email_source =通知\ u0026email_token = ALZL6DFOQ5NCP36U57U3JA3QKNFZDA5CNFSM4ILG7ST2YY3PNVWWK3TUL52HS4DFVREXG43VMVBW63LNMVXHJKTDN5WW2ZLOORPWSZGOD7C6PGA#issuecomment-533063576?”,
“ 名”: “查看问题”
},
“ 说明”: “看待这个问题在GitHub上”,
“ 出版人”:{
“ @键入 “:“组织”,
“名称”:“ GitHub”,
“ URL”:“ https://github.com “
}
}
]

您好!我也出现了assert len(sys.argv)== 5的问题,不知道是如何解决的?

版本不对,重新配置环境,按照李大神的版本重新来过

@AlexSun0110
Copy link

AlexSun0110 commented Dec 1, 2019 via email

@zhoushuairan
Copy link
Author

zhoushuairan commented Dec 1, 2019 via email

@KuGua98
Copy link

KuGua98 commented May 10, 2020

你好,我反复确认了环境配置的版本,tensorflow1.8 python3.5 CUDA9.0
还是报错:
assert len(sys.argv)==5
AssertionError

不知道应该如何解决?

@zhoushuairan
Copy link
Author

zhoushuairan commented May 10, 2020 via email

@tianyili2017
Copy link
Owner

您好!看讨论中涉及到各种Python和Tensorflow版本,暂时不确定是否版本问题,因为之前的测试都是在一种配置下进行的(README.md提到),如有可能,最好用接近的配置运行,谢谢理解哈。
另外,还有一个可能的问题:运行的路径最好没有中文或空格,以免字符串识别错误,或者空格导致一个完整的字符串被识别成两个字符串,使得 assert len(sys.argv)==5 报错。

@zhoushuairan
Copy link
Author

zhoushuairan commented Jan 4, 2021 via email

@huaxiazi
Copy link

你好,我承认了环境配置的版本,tensorflow1.8 python3.5 CUDA9.0 还是报错: assert len(sys.argv)==5 AssertionError

不知道应该如何解

你好,我承认了环境配置的版本,tensorflow1.8 python3.5 CUDA9.0 还是报错: assert len(sys.argv)==5 AssertionError

不知道应该如何解决?

你好,请问你的问题解决了吗

@zhoushuairan
Copy link
Author

zhoushuairan commented Oct 31, 2021 via email

@huaxiazi
Copy link

huaxiazi commented Oct 31, 2021 via email

@zhoushuairan
Copy link
Author

zhoushuairan commented Oct 31, 2021 via email

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

6 participants