forked from AI4ALL-Official/Iris_Deployment
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
34 lines (26 loc) · 871 Bytes
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
import joblib
# random seed
seed = 1
# Read original dataset
iris = load_iris()
X = iris.data
y = iris.target
# split data into train and test sets
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=seed, stratify=y)
# create an instance of the random forest classifier
clf = RandomForestClassifier(n_estimators=100)
# train the classifier on the training data
clf.fit(X_train, y_train)
# predict on the test set
y_pred = clf.predict(X_test)
# calculate accuracy
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy}") # Accuracy: 0.967
# save the model to disk
joblib.dump(clf, "rf_model.sav")