generated from GippLab-DNLP-Team/dnlp-final-project
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathload_binary_data.py
59 lines (44 loc) · 2.26 KB
/
load_binary_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import pandas as pd
from sklearn.model_selection import train_test_split
# Data lcation is:
# https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews
def load_imdb_data(data_file):
"""
Loads the IMDB dataset from a CSV file, and processes it.
Args:
data_file (str): Path to the CSV file containing the IMDB dataset.
Returns:
DataFrame: A DataFrame containing the processed data.
"""
df = pd.read_csv(data_file)
df = df.reset_index().rename(columns={'index': 'id'})
df = df.rename(columns={'review': 'sentence'})
df['sentiment'] = df['sentiment'].apply(lambda x: "1" if x.lower() == "positive" else "0")
return df[['id', 'sentence', 'sentiment']]
def split_and_save_data(df, train_file, dev_file, test_file, test_size=0.3, dev_size=0.5, random_state=42):
"""
Splits the data into training, development (dev), and test sets and saves them to CSV files.
Args:
df (DataFrame): DataFrame.
train_file (str): Path to save the training data.
dev_file (str): Path to save the development data.
test_file (str): Path to save the test data.
test_size (float): Proportion of the dataset to include in the test set.
dev_size (float): Proportion of the remaining dataset (after test split) to include in the dev set.
random_state (int): Random seed for reproducibility.
"""
train_dev_df, test_df = train_test_split(df, test_size=test_size, random_state=random_state)
train_df, dev_df = train_test_split(train_dev_df, test_size=dev_size, random_state=random_state)
train_df.to_csv(train_file, sep='\t', index=False)
dev_df.to_csv(dev_file, sep='\t', index=False)
test_df.to_csv(test_file, sep='\t', index=False)
if __name__ == "__main__":
data_file = "/user/ahmed.assy/u11454/datasets/imdb_data.csv" # Update this path with the correct location
train_file = "data/IMDB_train_data.csv"
dev_file = "data/IMDB_dev_data.csv"
test_file = "data/IMDB_test_data.csv"
df = load_imdb_data(data_file)
split_and_save_data(df, train_file, dev_file, test_file)
print(f"Training data saved to {train_file}")
print(f"Development data saved to {dev_file}")
print(f"Test data saved to {test_file}")