forked from pytorch-ignite/code-generator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
187 lines (156 loc) · 5.09 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
from argparse import Namespace
import albumentations as A
import cv2
import ignite.distributed as idist
import numpy as np
import torch
from albumentations.pytorch import ToTensorV2 as ToTensor
from ignite.utils import convert_tensor
from PIL import Image
from torch.utils.data import Dataset
from torchvision.datasets.voc import VOCSegmentation
class TransformedDataset(Dataset):
def __init__(self, ds, transform_fn):
assert isinstance(ds, Dataset)
assert callable(transform_fn)
self.ds = ds
self.transform_fn = transform_fn
def __len__(self):
return len(self.ds)
def __getitem__(self, index):
dp = self.ds[index]
return self.transform_fn(**dp)
class VOCSegmentationPIL(VOCSegmentation):
target_names = [
"background",
"aeroplane",
"bicycle",
"bird",
"boat",
"bottle",
"bus",
"car",
"cat",
"chair",
"cow",
"diningtable",
"dog",
"horse",
"motorbike",
"person",
"plant",
"sheep",
"sofa",
"train",
"tv/monitor",
]
def __init__(self, *args, return_meta=False, **kwargs):
super().__init__(*args, **kwargs)
self.return_meta = return_meta
def __getitem__(self, index):
img = np.asarray(Image.open(self.images[index]).convert("RGB"))
assert img is not None, f"Image at '{self.images[index]}' has a problem"
mask = np.asarray(Image.open(self.masks[index]))
if self.return_meta:
return {
"image": img,
"mask": mask,
"meta": {
"index": index,
"image_path": self.images[index],
"mask_path": self.masks[index],
},
}
return {"image": img, "mask": mask}
def setup_data(config: Namespace):
try:
dataset_train = VOCSegmentationPIL(
root=config.data_path,
year="2012",
image_set="train",
download=False,
)
except RuntimeError as e:
raise RuntimeError(
"Dataset not found. You can use `download_datasets` from data.py function to download it."
) from e
dataset_eval = VOCSegmentationPIL(
root=config.data_path, year="2012", image_set="val", download=False
)
val_img_size = 513
train_img_size = 480
mean = (0.485, 0.456, 0.406)
std = (0.229, 0.224, 0.225)
transform_train = A.Compose(
[
A.RandomScale(
scale_limit=(0.0, 1.5), interpolation=cv2.INTER_LINEAR, p=1.0
),
A.PadIfNeeded(val_img_size, val_img_size, border_mode=cv2.BORDER_CONSTANT),
A.RandomCrop(train_img_size, train_img_size),
A.HorizontalFlip(),
A.Blur(blur_limit=3),
A.Normalize(mean=mean, std=std),
ignore_mask_boundaries,
ToTensor(),
]
)
transform_eval = A.Compose(
[
A.PadIfNeeded(val_img_size, val_img_size, border_mode=cv2.BORDER_CONSTANT),
A.Normalize(mean=mean, std=std),
ignore_mask_boundaries,
ToTensor(),
]
)
dataset_train = TransformedDataset(dataset_train, transform_fn=transform_train)
dataset_eval = TransformedDataset(dataset_eval, transform_fn=transform_eval)
dataloader_train = idist.auto_dataloader(
dataset_train,
shuffle=True,
batch_size=config.train_batch_size,
num_workers=config.num_workers,
drop_last=True,
)
dataloader_eval = idist.auto_dataloader(
dataset_eval,
shuffle=False,
batch_size=config.eval_batch_size,
num_workers=config.num_workers,
drop_last=False,
)
return dataloader_train, dataloader_eval
def ignore_mask_boundaries(**kwargs):
assert "mask" in kwargs, "Input should contain 'mask'"
mask = kwargs["mask"]
mask[mask == 255] = 0
kwargs["mask"] = mask
return kwargs
def denormalize(t, mean, std, max_pixel_value=255):
assert isinstance(t, torch.Tensor), f"{type(t)}"
assert t.ndim == 3
d = t.device
mean = torch.tensor(mean, device=d).unsqueeze(-1).unsqueeze(-1)
std = torch.tensor(std, device=d).unsqueeze(-1).unsqueeze(-1)
tensor = std * t + mean
tensor *= max_pixel_value
return tensor
def prepare_image_mask(batch, device, non_blocking):
x, y = batch["image"], batch["mask"]
x = convert_tensor(x, device, non_blocking=non_blocking)
y = convert_tensor(y, device, non_blocking=non_blocking).long()
return x, y
def download_datasets(data_path):
#::: if (it.use_dist) { :::#
local_rank = idist.get_local_rank()
if local_rank > 0:
# Ensure that only rank 0 download the dataset
idist.barrier()
#::: } :::#
VOCSegmentation(data_path, image_set="train", download=True)
VOCSegmentation(data_path, image_set="val", download=True)
#::: if (it.use_dist) { :::#
if local_rank == 0:
# Ensure that only rank 0 download the dataset
idist.barrier()
#::: } :::#