Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Python ver docs #247

Open
wants to merge 9 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion docs/installation.rst
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@ Installation
============


scArches requires Python 3.7 or 3.8. We recommend to use Miniconda.
scArches requires Python 3.9 or above. We recommend to use Miniconda.

PyPI
--------
Expand Down
1,007 changes: 1,007 additions & 0 deletions notebooks/trvae_perturbation_prediction.ipynb

Large diffs are not rendered by default.

239 changes: 239 additions & 0 deletions scarches/models/trvae/_utils.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,10 @@
import torch
import numpy as np
import logging
import seaborn as sns
import pandas as pd
from matplotlib import pyplot
from scipy import stats

logger = logging.getLogger(__name__)

Expand All @@ -22,3 +26,238 @@ def partition(data, partitions, num_partitions):
indices = torch.nonzero((partitions == i), as_tuple=False).squeeze(1)
res += [data[indices]]
return res


def reg_mean_plot(
adata,
condition_key,
target_condition,
labels,
path_to_save="./reg_mean.pdf",
save=False,
gene_list=None,
show=False,
top_100_genes=None,
verbose=False,
legend=True,
title=None,
x_coeff=0.30,
y_coeff=0.8,
fontsize=14,
**kwargs,
):
"""
Plots mean matching figure for a set of specific genes.

Parameters
----------
adata: `~anndata.AnnData`
AnnData object with equivalent structure to initial AnnData. If `None`, defaults to the
AnnData object used to initialize the model. Must have been setup with `batch_key` and `labels_key`,
corresponding to batch and cell type metadata, respectively.
axis_keys: dict
Dictionary of `adata.obs` keys that are used by the axes of the plot. Has to be in the following form:
`{"x": "Key for x-axis", "y": "Key for y-axis"}`.
labels: dict
Dictionary of axes labels of the form `{"x": "x-axis-name", "y": "y-axis name"}`.
path_to_save: basestring
path to save the plot.
save: boolean
Specify if the plot should be saved or not.
gene_list: list
list of gene names to be plotted.
show: bool
if `True`: will show to the plot after saving it.

"""

sns.set_theme()
sns.set_theme(color_codes=True)

axis_keys = {"x":"other", "y":target_condition}

diff_genes = top_100_genes
target_cd = adata[adata.obs[condition_key] == target_condition]
other_cd = adata[adata.obs[condition_key] != target_condition]
if diff_genes is not None:
if hasattr(diff_genes, "tolist"):
diff_genes = diff_genes.tolist()
adata_diff = adata[:, diff_genes]
target_diff = adata_diff[adata_diff.obs[condition_key] == target_condition]
other_diff = adata_diff[adata_diff.obs[condition_key] != target_condition]
x_diff = np.asarray(np.mean(target_diff.X, axis=0)).ravel()
y_diff = np.asarray(np.mean(other_diff.X, axis=0)).ravel()
m, b, r_value_diff, p_value_diff, std_err_diff = stats.linregress(
x_diff, y_diff
)
if verbose:
print("top_100 DEGs mean: ", r_value_diff**2)
x = np.asarray(np.mean(other_cd.X, axis=0)).ravel()
y = np.asarray(np.mean(target_cd.X, axis=0)).ravel()
m, b, r_value, p_value, std_err = stats.linregress(x, y)
if verbose:
print("All genes mean: ", r_value**2)
df = pd.DataFrame({axis_keys["x"]: x, axis_keys["y"]: y})
ax = sns.regplot(x=axis_keys["x"], y=axis_keys["y"], data=df)
ax.tick_params(labelsize=fontsize)
if "range" in kwargs:
start, stop, step = kwargs.get("range")
ax.set_xticks(np.arange(start, stop, step))
ax.set_yticks(np.arange(start, stop, step))
ax.set_xlabel(labels["x"], fontsize=fontsize)
ax.set_ylabel(labels["y"], fontsize=fontsize)
if gene_list is not None:
texts = []
for i in gene_list:
j = adata.var_names.tolist().index(i)
x_bar = x[j]
y_bar = y[j]
texts.append(pyplot.text(x_bar, y_bar, i, fontsize=11, color="black"))
pyplot.plot(x_bar, y_bar, "o", color="red", markersize=5)

if legend:
pyplot.legend(loc="center left", bbox_to_anchor=(1, 0.5))
if title is None:
pyplot.title("", fontsize=fontsize)
else:
pyplot.title(title, fontsize=fontsize)
ax.text(
max(x) - max(x) * x_coeff,
max(y) - y_coeff * max(y),
r"$\mathrm{R^2_{\mathrm{\mathsf{all\ genes}}}}$= " + f"{r_value ** 2:.2f}",
fontsize=kwargs.get("textsize", fontsize),
)
if diff_genes is not None:
ax.text(
max(x) - max(x) * x_coeff,
max(y) - (y_coeff + 0.15) * max(y),
r"$\mathrm{R^2_{\mathrm{\mathsf{top\ 100\ DEGs}}}}$= "
+ f"{r_value_diff ** 2:.2f}",
fontsize=kwargs.get("textsize", fontsize),
)
if save:
pyplot.savefig(f"{path_to_save}", bbox_inches="tight", dpi=100)
if show:
pyplot.show()
pyplot.close()
if diff_genes is not None:
return r_value**2, r_value_diff**2
else:
return r_value**2

def reg_var_plot(
adata,
condition_key,
target_condition,
labels,
path_to_save="./reg_var.pdf",
save=False,
gene_list=None,
show=False,
top_100_genes=None,
verbose=False,
legend=True,
title=None,
x_coeff=0.30,
y_coeff=0.8,
fontsize=14,
**kwargs,
):
"""
Plots variance matching figure for a set of specific genes.

Parameters
----------
adata: `~anndata.AnnData`
AnnData object with equivalent structure to initial AnnData. If `None`, defaults to the
AnnData object used to initialize the model. Must have been setup with `batch_key` and `labels_key`,
corresponding to batch and cell type metadata, respectively.
axis_keys: dict
Dictionary of `adata.obs` keys that are used by the axes of the plot. Has to be in the following form:
`{"x": "Key for x-axis", "y": "Key for y-axis"}`.
labels: dict
Dictionary of axes labels of the form `{"x": "x-axis-name", "y": "y-axis name"}`.
path_to_save: basestring
path to save the plot.
save: boolean
Specify if the plot should be saved or not.
gene_list: list
list of gene names to be plotted.
show: bool
if `True`: will show to the plot after saving it.

"""

sns.set_theme()
sns.set_theme(color_codes=True)

axis_keys = {"x":"other", "y":target_condition}

diff_genes = top_100_genes
target_cd = adata[adata.obs[condition_key] == target_condition]
other_cd = adata[adata.obs[condition_key] != target_condition]
if diff_genes is not None:
if hasattr(diff_genes, "tolist"):
diff_genes = diff_genes.tolist()
adata_diff = adata[:, diff_genes]
target_diff = adata_diff[adata_diff.obs[condition_key] == target_condition]
other_diff = adata_diff[adata_diff.obs[condition_key] != target_condition]
x_diff = np.asarray(np.var(target_diff.X, axis=0)).ravel()
y_diff = np.asarray(np.var(other_diff.X, axis=0)).ravel()
m, b, r_value_diff, p_value_diff, std_err_diff = stats.linregress(
x_diff, y_diff
)
if verbose:
print("top_100 DEGs var: ", r_value_diff**2)
x = np.asarray(np.var(other_cd.X, axis=0)).ravel()
y = np.asarray(np.var(target_cd.X, axis=0)).ravel()
m, b, r_value, p_value, std_err = stats.linregress(x, y)
if verbose:
print("All genes var: ", r_value**2)
df = pd.DataFrame({axis_keys["x"]: x, axis_keys["y"]: y})
ax = sns.regplot(x=axis_keys["x"], y=axis_keys["y"], data=df)
ax.tick_params(labelsize=fontsize)
if "range" in kwargs:
start, stop, step = kwargs.get("range")
ax.set_xticks(np.arange(start, stop, step))
ax.set_yticks(np.arange(start, stop, step))
ax.set_xlabel(labels["x"], fontsize=fontsize)
ax.set_ylabel(labels["y"], fontsize=fontsize)
if gene_list is not None:
texts = []
for i in gene_list:
j = adata.var_names.tolist().index(i)
x_bar = x[j]
y_bar = y[j]
texts.append(pyplot.text(x_bar, y_bar, i, fontsize=11, color="black"))
pyplot.plot(x_bar, y_bar, "o", color="red", markersize=5)

if legend:
pyplot.legend(loc="center left", bbox_to_anchor=(1, 0.5))
if title is None:
pyplot.title("", fontsize=fontsize)
else:
pyplot.title(title, fontsize=fontsize)
ax.text(
max(x) - max(x) * x_coeff,
max(y) - y_coeff * max(y),
r"$\mathrm{R^2_{\mathrm{\mathsf{all\ genes}}}}$= " + f"{r_value ** 2:.2f}",
fontsize=kwargs.get("textsize", fontsize),
)
if diff_genes is not None:
ax.text(
max(x) - max(x) * x_coeff,
max(y) - (y_coeff + 0.15) * max(y),
r"$\mathrm{R^2_{\mathrm{\mathsf{top\ 100\ DEGs}}}}$= "
+ f"{r_value_diff ** 2:.2f}",
fontsize=kwargs.get("textsize", fontsize),
)
if save:
pyplot.savefig(f"{path_to_save}", bbox_inches="tight", dpi=100)
if show:
pyplot.show()
pyplot.close()
if diff_genes is not None:
return r_value**2, r_value_diff**2
else:
return r_value**2