Skip to content

Commit c7a99ac

Browse files
committed
added sql queries 6 to 10
1 parent f986582 commit c7a99ac

File tree

5 files changed

+168
-0
lines changed

5 files changed

+168
-0
lines changed

groupingdata/sqlquery10.sql

+34
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,34 @@
1+
Information about the table:
2+
Table Customer:
3+
4+
+---------+------------------+-----------------------+--------+-----------+---------+----------------+
5+
| cust_id | cname | Address | Gender | City | Pincode | TotalOrdersYet |
6+
+---------+------------------+-----------------------+--------+-----------+---------+----------------+
7+
| 546 | Rakesh Matam | Bongora, kamrup rural | M | Guwahati | 781015 | 3 |
8+
| 1111 | Kuldeep Ravaliya | Bongora, kamrup rural | M | Guwahati | 781015 | 7 |
9+
| 670 | Sugam Sehgal | Lajpat Nagar | M | Jalandhar | 144001 | 2 |
10+
| 1110 | Sumit Mishra | Bongora, kamrup rural | M | Guwahati | 781015 | 1 |
11+
| 890 | Lokesh Daga | Ashok Nagar | M | Jalandhar | 144003 | 4 |
12+
| 700 | Riya Gupta | Dilbagh Nagar | F | Jalandhar | 144002 | 5 |
13+
| 1251 | Ram Kumar | Dilbagh Nagar | M | Jalandhar | 144002 | 1 |
14+
| 1300 | Shayam Singh | Ludhiana H.O | M | Ludhiana | 141001 | 15 |
15+
| 245 | Neelabh Shukla | Ashok Nagar | M | Jalandhar | 144003 | 10 |
16+
| 210 | Barkha Singh | Dilbagh Nagar | F | Jalandhar | 144002 | 1 |
17+
| 500 | Rohan Arora | Ludhiana H.O | M | Ludhiana | 141001 | 7 |
18+
+---------+------------------+-----------------------+--------+-----------+---------+----------------+
19+
20+
Problem Statement:
21+
List down all the addresses from Jalandhar city with the number of times the address appears.
22+
Note: Name the number of times the address appears as "Address_times" using Alias Keyword.
23+
24+
Solution:
25+
SELECT address, count(address) AS Address_times FROM customer WHERE city='Jalandhar' GROUP BY address;
26+
27+
Output:
28+
+---------------+---------------+
29+
| address | Address_times |
30+
+---------------+---------------+
31+
| Lajpat Nagar | 1 |
32+
| Ashok Nagar | 2 |
33+
| Dilbagh Nagar | 3 |
34+
+---------------+---------------+

groupingdata/sqlquery6.sql

+35
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,35 @@
1+
Information about the table:
2+
Table Customer:
3+
4+
+---------+------------------+-----------------------+--------+-----------+---------+----------------+
5+
| cust_id | cname | Address | Gender | City | Pincode | TotalOrdersYet |
6+
+---------+------------------+-----------------------+--------+-----------+---------+----------------+
7+
| 546 | Rakesh Matam | Bongora, kamrup rural | M | Guwahati | 781015 | 3 |
8+
| 1111 | Kuldeep Ravaliya | Bongora, kamrup rural | M | Guwahati | 781015 | 7 |
9+
| 670 | Sugam Sehgal | Lajpat Nagar | M | Jalandhar | 144001 | 2 |
10+
| 1110 | Sumit Mishra | Bongora, kamrup rural | M | Guwahati | 781015 | 1 |
11+
| 890 | Lokesh Daga | Ashok Nagar | M | Jalandhar | 144003 | 4 |
12+
| 700 | Riya Gupta | Dilbagh Nagar | F | Jalandhar | 144002 | 5 |
13+
| 1251 | Ram Kumar | Dilbagh Nagar | M | Jalandhar | 144002 | 1 |
14+
| 1300 | Shayam Singh | Ludhiana H.O | M | Ludhiana | 141001 | 15 |
15+
| 245 | Neelabh Shukla | Ashok Nagar | M | Jalandhar | 144003 | 10 |
16+
| 210 | Barkha Singh | Dilbagh Nagar | F | Jalandhar | 144002 | 1 |
17+
| 500 | Rohan Arora | Ludhiana H.O | M | Ludhiana | 141001 | 7 |
18+
+---------+------------------+-----------------------+--------+-----------+---------+----------------+
19+
20+
Problem Statement:
21+
List out the maximum number of orders made from a particular Pincode.
22+
23+
Solution:
24+
SELECT pincode, MAX(totalordersyet) FROM customer GROUP BY pincode;
25+
26+
Output:
27+
+---------+---------------------+
28+
| pincode | MAX(totalordersyet) |
29+
+---------+---------------------+
30+
| 781015 | 7 |
31+
| 144001 | 2 |
32+
| 144003 | 10 |
33+
| 144002 | 5 |
34+
| 141001 | 15 |
35+
+---------+---------------------+

groupingdata/sqlquery7.sql

+32
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,32 @@
1+
Information about the table:
2+
Table Customer:
3+
4+
+---------+------------------+-----------------------+--------+-----------+---------+----------------+
5+
| cust_id | cname | Address | Gender | City | Pincode | TotalOrdersYet |
6+
+---------+------------------+-----------------------+--------+-----------+---------+----------------+
7+
| 546 | Rakesh Matam | Bongora, kamrup rural | M | Guwahati | 781015 | 3 |
8+
| 1111 | Kuldeep Ravaliya | Bongora, kamrup rural | M | Guwahati | 781015 | 7 |
9+
| 670 | Sugam Sehgal | Lajpat Nagar | M | Jalandhar | 144001 | 2 |
10+
| 1110 | Sumit Mishra | Bongora, kamrup rural | M | Guwahati | 781015 | 1 |
11+
| 890 | Lokesh Daga | Ashok Nagar | M | Jalandhar | 144003 | 4 |
12+
| 700 | Riya Gupta | Dilbagh Nagar | F | Jalandhar | 144002 | 5 |
13+
| 1251 | Ram Kumar | Dilbagh Nagar | M | Jalandhar | 144002 | 1 |
14+
| 1300 | Shayam Singh | Ludhiana H.O | M | Ludhiana | 141001 | 15 |
15+
| 245 | Neelabh Shukla | Ashok Nagar | M | Jalandhar | 144003 | 10 |
16+
| 210 | Barkha Singh | Dilbagh Nagar | F | Jalandhar | 144002 | 1 |
17+
| 500 | Rohan Arora | Ludhiana H.O | M | Ludhiana | 141001 | 7 |
18+
+---------+------------------+-----------------------+--------+-----------+---------+----------------+
19+
20+
Problem Statement:
21+
List out the minimum number of orders made from a particular Gender.
22+
23+
Solution:
24+
SELECT GENDER, MIN(TOTALORDERSYET) FROM CUSTOMER GROUP BY GENDER;
25+
26+
Output:
27+
+--------+---------------------+
28+
| GENDER | MIN(TOTALORDERSYET) |
29+
+--------+---------------------+
30+
| M | 1 |
31+
| F | 1 |
32+
+--------+---------------------+

groupingdata/sqlquery8.sql

+33
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,33 @@
1+
Information about the table:
2+
Table Customer:
3+
4+
+---------+------------------+-----------------------+--------+-----------+---------+----------------+
5+
| cust_id | cname | Address | Gender | City | Pincode | TotalOrdersYet |
6+
+---------+------------------+-----------------------+--------+-----------+---------+----------------+
7+
| 546 | Rakesh Matam | Bongora, kamrup rural | M | Guwahati | 781015 | 3 |
8+
| 1111 | Kuldeep Ravaliya | Bongora, kamrup rural | M | Guwahati | 781015 | 7 |
9+
| 670 | Sugam Sehgal | Lajpat Nagar | M | Jalandhar | 144001 | 2 |
10+
| 1110 | Sumit Mishra | Bongora, kamrup rural | M | Guwahati | 781015 | 1 |
11+
| 890 | Lokesh Daga | Ashok Nagar | M | Jalandhar | 144003 | 4 |
12+
| 700 | Riya Gupta | Dilbagh Nagar | F | Jalandhar | 144002 | 5 |
13+
| 1251 | Ram Kumar | Dilbagh Nagar | M | Jalandhar | 144002 | 1 |
14+
| 1300 | Shayam Singh | Ludhiana H.O | M | Ludhiana | 141001 | 15 |
15+
| 245 | Neelabh Shukla | Ashok Nagar | M | Jalandhar | 144003 | 10 |
16+
| 210 | Barkha Singh | Dilbagh Nagar | F | Jalandhar | 144002 | 1 |
17+
| 500 | Rohan Arora | Ludhiana H.O | M | Ludhiana | 141001 | 7 |
18+
+---------+------------------+-----------------------+--------+-----------+---------+----------------+
19+
20+
Problem Statement:
21+
List out the Average number of orders made from each City.
22+
23+
Solution:
24+
SELECT city, AVG(TOTALORDERSYET) FROM customer GROUP BY city;
25+
26+
Output:
27+
+-----------+---------------------+
28+
| city | AVG(TOTALORDERSYET) |
29+
+-----------+---------------------+
30+
| Guwahati | 3.6667 |
31+
| Jalandhar | 3.8333 |
32+
| Ludhiana | 11.0000 |
33+
+-----------+---------------------+

groupingdata/sqlquery9.sql

+34
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,34 @@
1+
Information about the table:
2+
Table Customer:
3+
4+
+---------+------------------+-----------------------+--------+-----------+---------+----------------+
5+
| cust_id | cname | Address | Gender | City | Pincode | TotalOrdersYet |
6+
+---------+------------------+-----------------------+--------+-----------+---------+----------------+
7+
| 546 | Rakesh Matam | Bongora, kamrup rural | M | Guwahati | 781015 | 3 |
8+
| 1111 | Kuldeep Ravaliya | Bongora, kamrup rural | M | Guwahati | 781015 | 7 |
9+
| 670 | Sugam Sehgal | Lajpat Nagar | M | Jalandhar | 144001 | 2 |
10+
| 1110 | Sumit Mishra | Bongora, kamrup rural | M | Guwahati | 781015 | 1 |
11+
| 890 | Lokesh Daga | Ashok Nagar | M | Jalandhar | 144003 | 4 |
12+
| 700 | Riya Gupta | Dilbagh Nagar | F | Jalandhar | 144002 | 5 |
13+
| 1251 | Ram Kumar | Dilbagh Nagar | M | Jalandhar | 144002 | 1 |
14+
| 1300 | Shayam Singh | Ludhiana H.O | M | Ludhiana | 141001 | 15 |
15+
| 245 | Neelabh Shukla | Ashok Nagar | M | Jalandhar | 144003 | 10 |
16+
| 210 | Barkha Singh | Dilbagh Nagar | F | Jalandhar | 144002 | 1 |
17+
| 500 | Rohan Arora | Ludhiana H.O | M | Ludhiana | 141001 | 7 |
18+
+---------+------------------+-----------------------+--------+-----------+---------+----------------+
19+
20+
Problem Statement:
21+
List the cities in descending order of the number of customers residing in them.
22+
Note: Name the number of customers residing in them as "Number" using Alias Keyword.
23+
24+
Solution:
25+
SELECT city, COUNT(cname) AS Number FROM customer GROUP BY CITY ORDER BY Number DESC;
26+
27+
Output:
28+
+-----------+--------+
29+
| city | Number |
30+
+-----------+--------+
31+
| Jalandhar | 6 |
32+
| Guwahati | 3 |
33+
| Ludhiana | 2 |
34+
+-----------+--------+

0 commit comments

Comments
 (0)